

The effect of melatonin supplementation on serum levels of leptin and adiponectin: A systematic review and metaanalysis of randomized clinical trials

F. Hajizadeh-Sharafabad¹, <u>S. Daneghian²</u>, L. Samadian³

¹Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
 ²Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
 ²Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
 ³Department of public health, school of public health, Urmia University of Medical Sciences, Urmia, Iran.

In the name of GOD

Obesity

- Comorbidities
- Prevalence
- Causes
- Melatonin
- Leptin
- Adiponectin
- Methods
- Results
- Discussion

Content:

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24th November 2023

Obesity-associated co-morbidities

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24"h November 2023

THE 14th INTERNATIONAL CONGRESS OF Global overweight and obesity prevale

- worldobesity.org atlas: 2035: over 4 billion people may be affected
- 2020: over 2.6 billion
- 38% of the world's population in 2020
- expected to be steepest among children and adolescents,
- Low income countries
- No country has reported a decline in obesity prevalence across their entire population, and none are on track to meet the World Health Organization's (WHO) target of 'no increase on 2010 levels by 2025'. Y

over 50% by 2035

THE 14th INTERNATIONAL CONGRESS OF Global overweight and obesity prevalence ENDOCRINE DISORDERS

Table 1.1: Global overweight and obesity 2020–2035

Numbers of people (aged over 5 years) and percentage of the population with overweight or obesity*

Number with overweigh (millions)

Number with obesity (BI

Proportion of the popula (BMI ≥25kg/m²)

Proportion of the popula

reference.

	2020	2025	2030	2035
nt or obesity (BMI≥25kg/m²)				
	2,603	3,041	3,507	4,005
MI ≥30kg/m²) (millions)	988	1,249	1,556	1,914
ation with overweight or obesity				
	38%	42%	46%	51%
ation with obesity (BMI ≥30kg/m²)	14%	17%	20%	24%

* For children and adolescents, overweight and obesity are defined using the WHO classification of +1SD and +2SD above median growth

PROJECTED TRENDS IN THE PREVALENCE OF OBESITY (BMI ≥30kg/m²)

PROJECTED ECONOMIC IMPACT OF OVERWEIGHT (BMI ≥25kg/m²)

millions	12000			
	11000			
	10000			
	9000			
	8000			
	7000			
	6000			
Ş	5000			
S	4000			
	3000			
	2000			
	1000			
	0			
		2020	2025	20

IMPACT OF OVERWEIGHT (BMI ≥25kg/m²) 2020–2035

	Healthcare impact of BMI ≥25kg/m², US\$ million	Total economic impact of BMI ≥25kg/m², US\$ million	Estimated GDP US\$ billion	Impact of E ≥25kg/m ² GDP
2020	1,692	4,992	296	1.7%
2025	2,071	6,458	337	1.9%
2030	2,503	8,382	377	2.2%
2035	3,019	11,015	425	2.6%

on

•Hyperleptinemia

•Resistance to a reduction of body mass

THE 14th INTERNATIONAL CONGRESS OF **ENDOCRINE DISORDERS** 22"d - 24"h November 2023

- widely distributed melatonin receptors.
 - vascular function
 - antioxidant
 - anti-inflammatory
 - immunomodulatory \checkmark
 - vasomotor effects
 - may improve metabolic syndrome components \checkmark
- \checkmark
- \checkmark

Add to this, the diversity of melatonin binding sites in gastrointestinal tracts suggest various possible function of melatonin in appetite regulation. 1.

Melatonin

an indoleamine, is secreted by the pineal gland from tryptophan amino acid. is released into the circulation in darkness I in light,

positive effect of melatonin on energy and lipid metabolism,

alleviate the body weight gain in mice, appetite, and behaviors.

Production sites:

- white adipose tissue.
- brown adipose tissue (BAT),
- placenta,
- fetal tissue,
- stomach,
- muscles,
- bone marrow,
- teeth,
- brain

Leptin

governs leptin synthesis and secretion

- Food intake,
- Total body fat,

Several hormones (Insulin and, to a lesser extent, other pancreatic peptide hormones, including amylin, glucagon, and pancreatic polypeptides) Hyperinsulinemia

 Prolonged (increase in leptin's plasma concentration) \checkmark Short-term hyperinsulinemia (does not cause such a change).

Leptin regulates:

- \checkmark food intake,
- ✓ body mass,
- reproductive functioning
- \checkmark plays a vital role in fetal growth,
- proinflammatory immune responses,
- ✓ angiogenesis, lipolysis

A complex array of endocrine, neuroendocrine, and paracrine signals

Leptin and obesity

• fasting or energy restriction

fat cells increase

Sustained positive energy balance

- during refeeding, overfeeding, as well as during surgical stress

 - leptin levels increase proportionally
 - bind to leptin receptors (LEP-R) in the brain
 - send signals to inhibit food intake and increase energy expenditure

weight is gained

- obesity
- with obesity

Leptin and obesity

Hyperleptinemia and resistance to reducing body mass are two characteristics of typical

Although Leptin is overexpressed at the gene level in the adipose tissue of individuals

some other studies point towards leptin resistance.

Several studies have shown that leptin serum concentration is correlated with fat mass, and by decreasing the fat mass, leptin concentration will be decreased

- derived from adipose tissue
- in the main tissue cells of the liver, osteoblasts, monocytes, epithelial cells and placenta
- improves insulin sensitivity: -1 in glucose uptake into the muscle, inhibition of glucose production in the liver, and enhancement of fatty acid oxidation
- acts directly in the CNS, regulating appetite and energy expenditure
- has antiinflammatory and insulin-resistant properties

Adiponectin

Dysregulation:

- pathogenesis of metabolic syndrome

- disorders.

Adiponectin

wide variety of metabolic disorders such as insulin resistance, abdominal obesity, glucose intolerance, dyslipidemia, high blood pressure and nonalcoholic fatty liver disease

Secretion of adiponectin is influenced by hormones, including prolactin, testosterone, growth hormone, and osteocalcin, as well as by b-adrenergic agonists **Pro inflammatory** cytokines (such as in obesity and related diseases) belong to the factors that reduce adiponectin gene expression

Hypo-adiponectinemia has been found to be a strong indicator of metabolic and vascular

• Electronic databases, including PubMed, SCOPUS, and Web of science were searched • from inception to 2023 • Original clinical trials published in English language that investigated the effect of melatonin on leptin and adipokines • The random-effect model

Methods:

1583 of records identified through database research

955 Of records screened

17 of full-text articles assessed for eligibility

Methods:

No additional records identified through other sources

938 Of records excluded

12 of full-text articles excluded: Reasons: critically ill patients loss of quantitative data

5 Included in meta-analysis (7 effect sizes for leptin, 3 for adiponectin)

First author	Year	Country	RCT type	health status	Mean Age	gender	sample size_ treatment group	sample size_ control group	control group	duration (week)	Dose	type of supplement
Mina Bahrami	2020	Iran	RCT	patients with NAFLD	44 ± 9.62(Melatonin Group); 37.71± 11.31 (Placebo group)	m/f	24	21	placebo	12 weeks	6 mg/d	Melatonin tablet
Mina Bahrami	2019	Iran	RCT	patients with Metabolic Syndrome	42.5 ± 9.8(Melatonin Group); 42.6 ± 10.2 (Placebo group)	m/f	36	34	placebo	12 weeks	6 mg/d	Melatonin tablet
Karolina Szewczyk- Golec	2017	Poland	RCT	obese (class 1 or 2) patients on a calorie- restricted diet	37.7 ± 3.40(Melatonin Group); 36.3 ± 4.18 (Placebo group)	m/f	15	15	placebo	30 days	10 mg/d	Melatonin Supplementation (cachets) with a calorie- restricted
Krzysztof Celinski	2010	Poland	RCT	patients with duodenal ulcers	28-50 years	m/f	14	14	placebo + omeprazole	21 days	5 mg twice a day (10 mg/day)	Melatonin Supplementation (tablet) + omeprazole
Krzysztof Celinski	2010	Poland	RCT	patients with gastric ulcers	28-50 years	m/f	14	14	placebo + omeprazole	21 days	5 mg twice a day (10 mg/day)	Melatonin Supplementation (tablet) + omeprazole
Sattar J. Abood	2020	Iraq	RCT	Women with Metabolic Syndrome	45.80 6.53 48.07 ± 7.43 (metformin) 45.80 ± 6.53 (met+mel)	f	19	13	placebo	3 months	10 mg/d	capsule dosage form
Mohammad Alizadeh	2021	Iran	RCT	women with PCOS	25.57 ± 4.99(Melatonin Group); 26.200 ± 5.72 (Placebo group)	f	21	20	placebo	8 weeks	6 mg/d	Melatonin Supplementation
Mohammad Alizadeh	2021	Iran	RCT	women with PCOS	28.22 ± 6.38(Melatonin + Mg); 25.57 ± 4.88 (Mg)	f	22	21	placebo (Mg)	8 weeks	6 mg/d	Mel+ Mg

Methods:

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22nd - 24th November 2023

Forest plot displaying weighted mean differences and 95% confidence intervals for the impact of melatonin supplementation on leptin concentrations.

Study

ID

Krzysztof Celinski (2010)

Krzysztof Celinski (2010)

Mina Bahrami (2019)

Mina Bahrami (2020)

Sattar J. Abood (2020)

Results:

	%
WMD (95% CI)	Weight
0.10 (-12.42, 12.62)	1.98
6.00 (-3.09, 15.09)	3.62
8.30 (-3.03, 19.63)	2.40
-2.80 (-5.42, -0.18)	23.27
-2.89 (-5.44, -0.34)	23.97
-0.32 (-1.83, 1.19)	34.77
-3.04 (-11.30, 5.22)	4.31
2.06 (-5.01, 9.13)	5.69
-1.05 (-2.85, 0.75)	100.00

Forest plot displaying weighted mean differences and 95% confidence intervals for the impact of melatonin supplementation on adiponectin concentrations.

Study

ID

Karolina Szewczyk-Golec (2017)

Mina Bahrami (2019)

Mina Bahrami (2020)

Overall (I-squared = 0.0%, p = 0.694)

Results:

WM

	%
1D (95% CI)	Weight
6 (0.05, 1.47)	59.26
0 (-0.16, 2.16)	22.03
8 (0.12, 2.64)	18.70
3 (0.39, 1.47)	100.00

Subgroup analyses for the effects of melatonin on serum levels of leptin in the participants of included studies

Overall

Intervention duration

≤8 weeks

>8 weeks

Dosage

≤6 mg/d

>6 mg/d

Gender

Both

Female

Baseline level of leptin

≤5 ng/mL

>5 ng/mL

Data are pooled weighted me

Results:

Effect sizes, n	WMD (95% CI)	P-within	P-between	 2	P-heterogeneity
8	-1.05 (-2.85, 0.75)	0.253		33.6	0.160

5	2.23 (-1.84, 6.29)	0.08	0.0	0.49
3	-1.08 (-2.73, 0.16)		28.8	0.09

4	-2.56 (-4.30, -0.83)	0.07	0.0	0.63
4	1.83 (-2.53, 6.19)		33.3	0.15

5	-0.66 (-4.30, 2.98)	0.86	58.20	0.13
3	-0.31 (-1.59, 0.98)		0.0	0.15

	2	1.18 (-4.09, 6.44)	0.22	45.04	0.18
	6	-1.08 (-2.73, 0.58)		28.87	0.15
ean differ	ences (95% Cls) by	a random-effects model.			

• The beneficial effects of melatonin on serum levels of adiponectin and leptin

1.Gender

2.Study population **Age D** Baseline levels of melatonin **disease**

Discussion

Effect of melatonin on leptin and adiponectin (animal studies)

Study	Animal model	Route of melatonin administration	Dose of melatonin	Diet type	Circulating leptin	Circulating adiponectin	Circulating insulin	Body weight
Ríos-Lugo et al. [131]	Adult male Wistar rats	Continuous in drinking water	25 μg/mL for 9 wk	Normal	24-hr rhythm disrupted	24-hr rhythm disrupted	Ŷ	Ļ
			25 μg/mL for 11 wk	High-fat	↓ Î	↓ Î	Ŷ	Ļ
Agil et al. [118]	Male Zucker diabetic fatty rats (fa/fa)	Continuous in drinking water	10 mg/kg/daily for 6 wk	Normal	Ŷ	↑	Ŷ	_
	Male Zucker lean rats (fa/-)				No effect	No effect	No effect	_
de Oliveira et al. [120]	Neonatally STZ- induced diabetic male Wistar rats	Nocturnal in drinking water	1 mg/kg/day for 8 wk	Normal	↓ non significant	↑	Ŷ	No effect
Kitagawa et al. [121]	Adult male Wistar rats	Intraperitoneal injection once a day between	1 mg/kg/day for 2 wk	Normal High- fructose	No effect ↓	No effect ↑	No effect ↓	No effect No effect
		06:00 and 07:00 hr	10 mg/kg/day for 2 wk	Normal High- fructose	No effect ↓	No effect ↑	No effect ↓	No effect No effect
Ríos-Lugo et al. [133]	Adult male Wistar rats	Continuous in drinking water	25 μg/mL for 10 wk	Normal High-fat	↑ ↓	↑ ↓	_	No effect ↓

Discussion

Effect of melatonin on leptin and adiponectin (Human studies)

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Study	Study group	Dose of melatonin	Time of melatonin administration	Circulating leptin	Circulati adiponeo	
Cagnacci	Postmenopausal	Single dose	At 8:30 hr	No effect	_	
et al. [138]	women estradiol	1 mg	At 15:30 hr	No effect	_	
	or placebo treated	Single dose 2 mg	1 mg at 8:30 hr and 1 mg at 15:30 hr	No effect	_	
Celinski et al. [137]	Male patients with liver cirrhosis	Single dose 10 mg	Morning after overnight fasting	Ŷ	_	
	Male healthy volunteers		before a test meal	1	_	
Gonciarz et al. [136]	Overweight patients with nonalcoholic steatohepatitis	10 mg/day for 28 days	Twice a day: 5 mg at 09:00 hr and 5 mg at 21:00 hr	1	1	

Discussion

• The beneficial effects of melatonin on serum levels of adiponectin and leptin

1.Gender

2.Study population **Age D** Baseline levels of melatonin **d**isease

Gender differences:

hormonal birth control pills bidirectional communication

Gender differences:

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22nd - 24th November 2023

)

77

Age and Gender differences:

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24th November 2023

10 weeks of daily melatonin administration: ✓ middleaged (10-month-old) male rats — intraabdominal fat, plasma leptin, and plasma insulin,

✓ Young adult (3-month-old) rats → same factors

aging-associated decrease in endogenous melatonin secretion.

Discussion

• high-fat diet and fasting resulted in disruptions of the circadian expression of adiponectin signaling components

• The rhythmicity is attenuated in obese subjects

• Whereas weight loss: secretion 29

Adiponectin

- associated with the recovery of homeostatic control of adiponectin

- and with a rise in plasma adiponectin.

related conditions.

Concluaion

• To sum up, we can say that melatonin should be obesity and related disease. It is recommended to consider the cost and limited evidence of habituation and tolerance. • Further research is needed to examine the long-term benefits of melatonin on amelioration of obesity and

considered as a supplementary approach to alleviate

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24"h November 2023

Subgroup analyses for the effects of melatonin on serum levels of leptin in the participants of included studies

Overall

Intervention duration

≤8 weeks

>8 weeks

Dosage

≤6 mg/d

>6 mg/d

Gender

Both

Female

Baseline level of leptin

≤5 ng/mL

>5 ng/mL

Data are pooled weighted mean differences (95% CIs) by a random-effects model.

Effect sizes, n	WMD (95% CI)	P-within	P-between	J 2	P-heteroge
8	-1.05 (-2.85, 0.75)	0.253		33.6	0.160

5	2.23 (-1.84, 6.29)	0.08	0.0	0.49
3	-1.08 (-2.73, 0.16)		28.8	0.09

4	-2.56 (-4.30, -0.83)
4	1.83 (-2.53, 6.19)

5	-0.66 (-4.30, 2.98)	0.86	58.20	0.13
3	-0.31 (-1.59, 0.98)		0.0	0.15

2	1.18 (-4.09, 6.44)	0.22	45.04	0.18
6	-1.08 (-2.73, 0.58)		28.87	0.15
rences (95% Cls) hv	a random-effects model			

	0.07	0.0	0.63
		33.3	0.15

