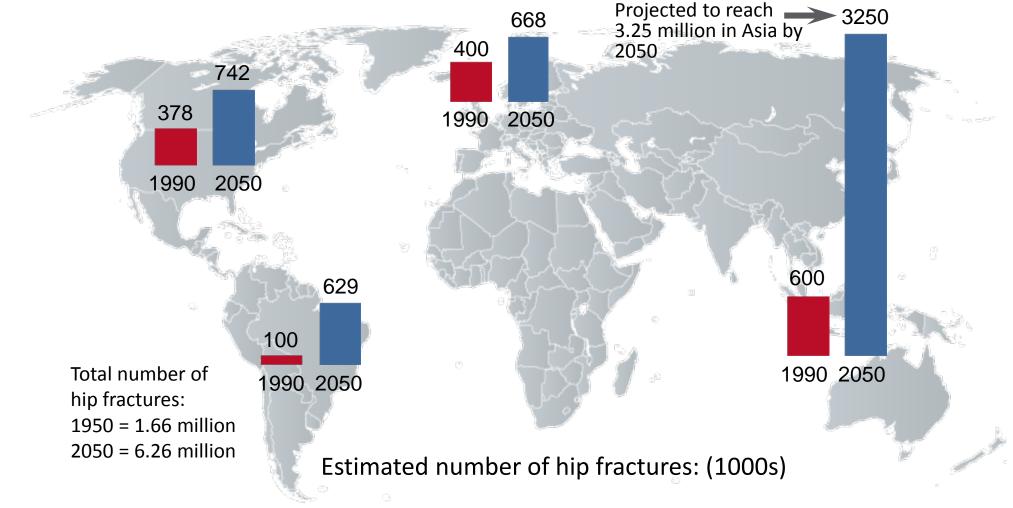
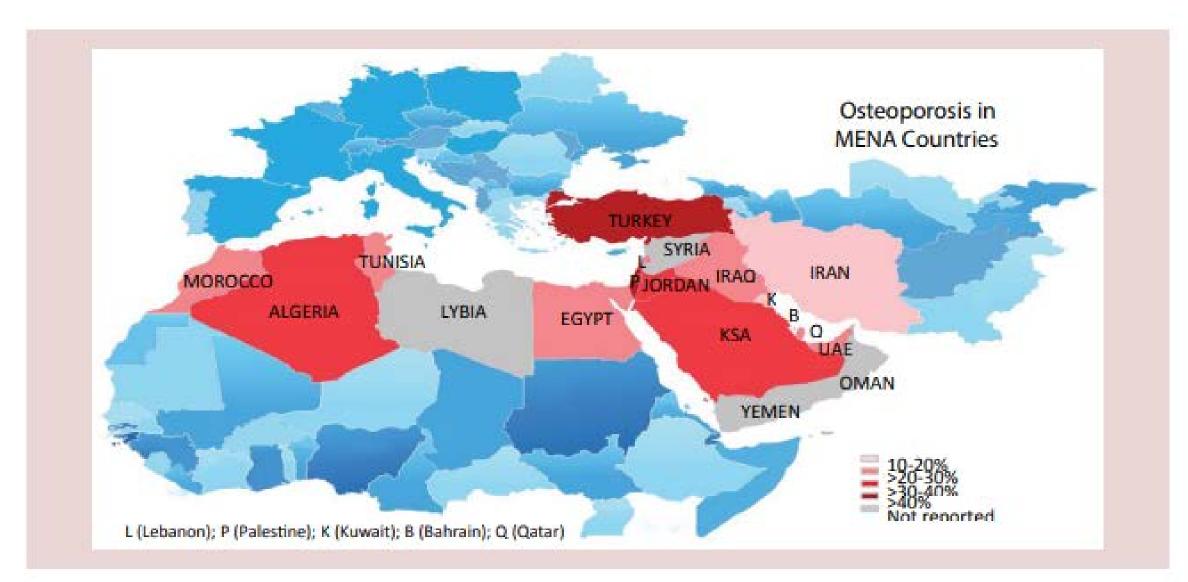
Risk stratification In Osteoporosis


Mohammad Hossein Dabbaghmanesh Professor of internal medicine, Endocrinologist Internal Medicine Institute Endocrine and Metabolism Research Center

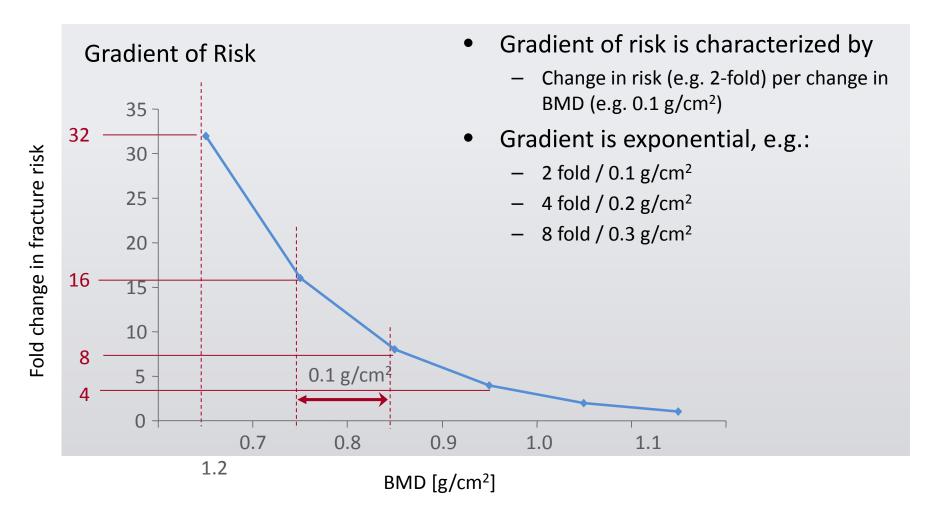
Osteoporosis Prevalence and Incidence Worldwide

- **Prevalence**: Over 200 million people worldwide have osteoporosis
- Incidence: Hip fractures projected to increase substantially by 2050:
 - 240% in women
 - 320% in men
- Even if no increase in the age-adjusted hip fracture rate, the number of hip fractures will increase from 1.7 million in 1990 to 6.3 million in 2050


www.iofbonehealth.org/healthprofessionals/aboutosteoporosis/epidemiology.htm

Projected Worldwide Increase in Hip Fracture Number

Adapted from C. Cooper et al, Osteoporos Int. 1992; 2:285-9


Osteoporosis Prevalence in adult Females in MENA region

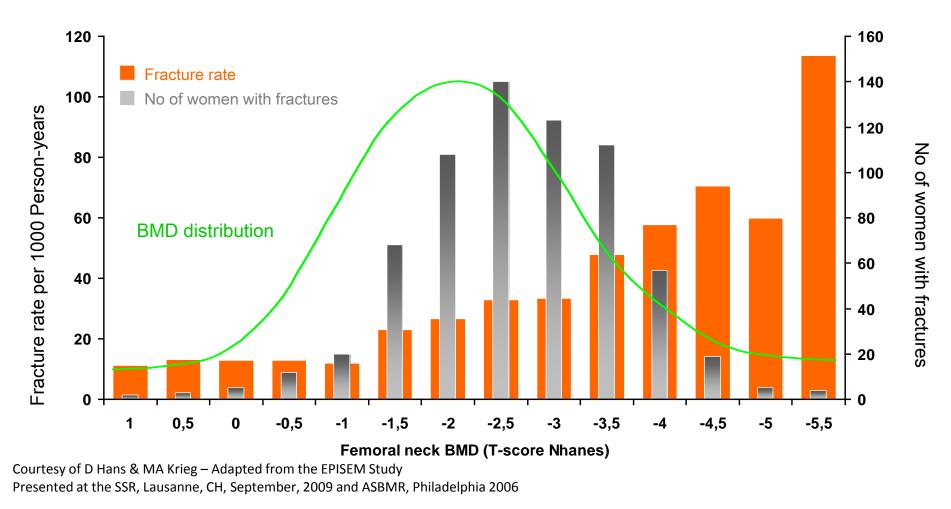
Fracture Prevalence and Incidence in Middle east

- Iran accounts for 0.85% of the global burden of hip fractures and 12.4% of the burden of hip fractures in the Middle East
- In Iran, there were 50 000 hip fractures in 2010, and
 62 000 are reached for 2020
- The disease burden is expected to increase with the projected rise in the aging population, with over 35% of people exceeding the age of 50 years.
- In the next few decades, the number of fragility fractures will likely double or even quadruple in MENA region countries

Fracture Risk Increases Exponentially with Declining BMD

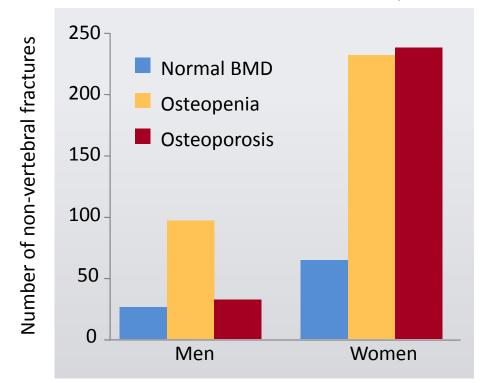
Diagnosis of osteoporosis by DXA

The T-score compares an individual's BMD with the mean value for young normals and expresses the difference as a standard deviation score


	T-score (SD)
Normal	Equal to -1.0 or higher
Low Bone Mass (Osteopenia)	Between -1.0 and -2.5
Osteoporosis	Equal to -2.5 or lower
Severe Osteoporosis	Equal to -2.5 or lower with fracture

World Health Organization. Technical Report Series 843; WHO, Geneva. 1994. Kanis JA et al. J Bone Miner Res. 1994;9:1137.

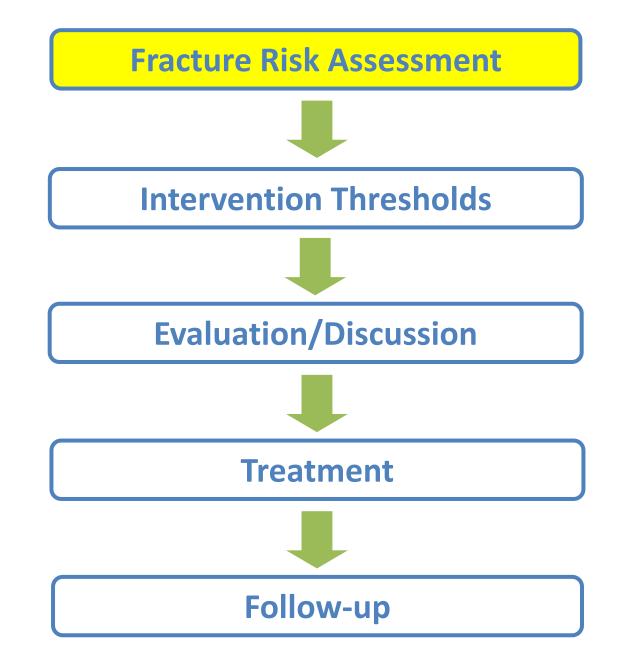
BMD Overlaps in Women With and Without Fracture


EPISEM study; 6862 postmenopausal white women ≥70 years, randomly selected from population based listing

Mean f/u of 3.2 yrs. 678 OP fractures (hip, distal forearm, proximal humerus)

Basing Treatment Decisions Solely on T-score Will Miss Over Half of Those Who Will Fracture

 Numerically More Fractures Occur in Those Without Osteoporosis by T-score (Only 44% of women and 21% of men who sustain nonvertebral fractures have osteoporosis by BMD)



5794 participants in the Rotterdam study; Mean follow-up 6.8 yrs FN BMD at baseline

Adapted from Schuit, Bone. 2004;34:195-202

Bone Density and Fracture Risk

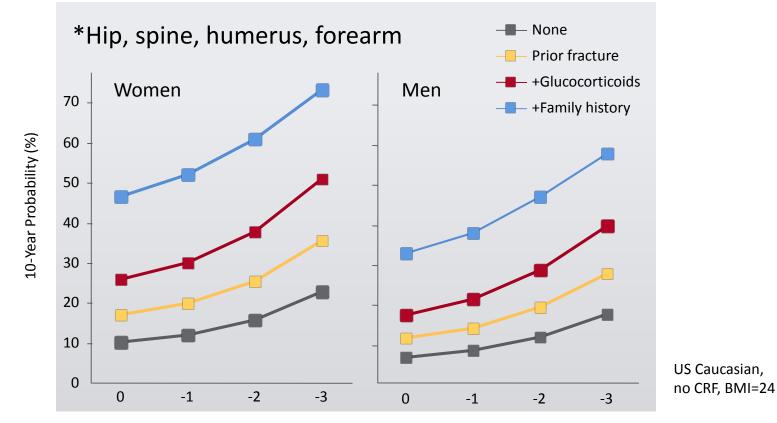
- Bone mineral **density** is important determinant of bone **strength**
- Bone strength is important predictor of fracture risk
- But we need to consider clinical risk factors in addition to BMD

Multiple Fracture Risk Factors Exist

Which Ones to Use?

- Age
- Prior fracture
- Low body weight
- Weight loss
- Inactivity
- Glucocorticoids
- Hyperparathyroidism
- Diabetes type 1
- Anorexia
- Gastrectomy

- Gender (female)
- Current smoking
- Low sunlight exposure
- Family Hx of fracture
- Surgical menopause
- Low calcium intake
- Hyperthyroidism
- Diabetes type 2
- Rheumatoid arthritis


Espallargues, M. et al. Osteoporos Int. 2001;12:811-822

Criteria Required for Risk Factors in the FRAX[®] Model

- Validated in multiple populations
- Easily accessible by primary care practitioners
- Be intuitive, rather than counterintuitive, to medical care
- Contribute to risk that is amenable to the therapeutic intervention proposed

Kanis, et. al, Assessment of osteoporosis at the primary healthcare level, WHO

Combining Risk Factors Improves Osteoporotic Fracture* Prediction

T-score

J.Kanis et al Osteoporosis Int, 2005; 16, 581-589

Cohorts Studied to Generate the WHO Fracture Risk Assessment Tool

- Twelve studies world-wide
 - EVOS/EPOS, Hiroshima, CaMoS, Rochester, Sheffield,
 Rotterdam, Gothenberg I, Gothenberg II, Dubbo/DOES, EPIDOS,
 Kuopio, OFELY
- N = 59,232; 74% female
- Person years = 249,898
- Osteoporotic fractures = 3,495
- Hip fractures = 957
- Validated in 11 cohorts; over 1 million person years

Kanis, et. al, Assessment of osteoporosis at the primary healthcare level, WHO

WHO Assessment of Absolute Fracture Risk - FRAX[®]

www.shef.ac.uk/FRAX

FRAX[®] Risk Factors Estimate 10-year Risk of Fracture

- Age (40-90), sex and clinical risk factors
- BMI
- Prior fragility fracture
- Parental history of hip fracture
- Current tobacco smoking
- Ever long-term use of glucocorticoids
- Rheumatoid arthritis or other secondary causes
- Alcohol intake 3 or more units daily

Kanis, et. al., Osteoporosis Int, 2008; 19:385-397

The FRAX® tool has been developed to evaluate fracture risk of patients. It is based on individual patient models that integrate the risks associated with clinical risk factors as well as bone mineral density (BMD) at the femoral neck.

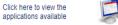
Dr. John A Kanis

Professor Emeritus. University of Sheffield

The FRAX[®] models have been developed from studying population-based cohorts from Europe, North America, Asia and Australia. In their most sophisticated form, the FRAX® tool is computer-driven and is available on this site. Several simplified paper versions, based on the number of risk factors are also available, and can be downloaded for office use.

The FRAX[®] algorithms give the 10-year probability of fracture. The output is a 10-year probability of hip fracture and the 10-year probability of a major osteoporotic fracture (clinical spine, forearm, hip or shoulder fracture).

Clarification


The University of Sheffield launched the FRAX tool in 2008. At that time the University hosted the The World Health Organisation (WHO) Collaborating Centre for Metabolic Bone Diseases (1991-2010), and the FRAX tool is based on data generated from that centre. However, FRAX was neither developed or endorsed by WHO . Any references to the 'WHO tool' or to the WHO Collaborating Centre after it finished its work in 2010 are incorrect.

© Centre for Metabolic Bone Diseases. University of Sheffield, UK

English | Arabic | Bengali | Chinese Simplified | Chinese Traditional | Croatian | Czech | Danish | Dutch | Estonian | Farsi | Finnish | French | Georgian | German | Greek | Icelandic | Italian | Indonesian | Japanese | Korean | Lithuanian | Norwegian | Polish | Portuguese (Portugal) | Portuguese | Romanian | Russian | Serbia | Slovak | Spanish | Swedish | Thai | Turkish | Ukrainian

Privacy / Terms and Conditions

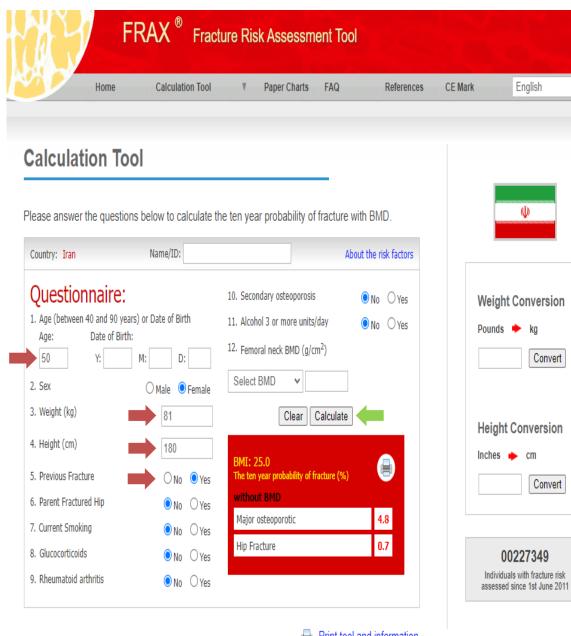
FRAX	Desktop	Application	

Web Version 4.3 View Release Notes

www.nof.org

45322637 Individuals with fracture risk assessed since 1st June 2011

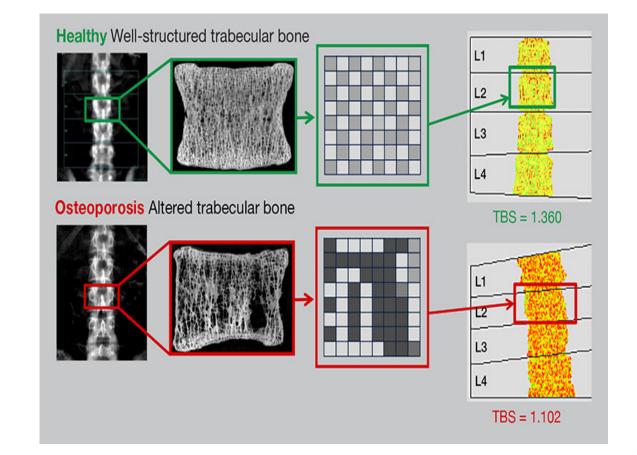
Ë

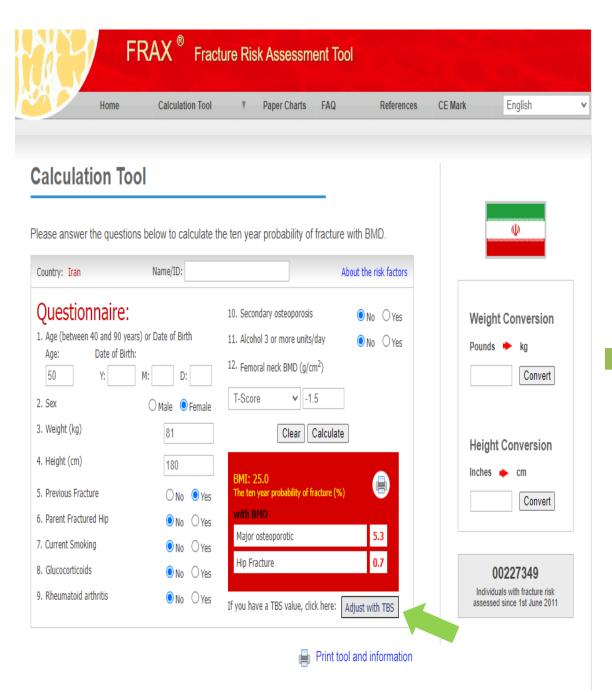

Home		Calculation Tool	Paper Charts	FAQ	References	CE Mark	English
		Asia					
Welcome to E	RA)	Europe				FRAX Desktop A	pplication
		Middle East & Africa	Abu Dhabi			Click here to view the	
		North America	Botswana			applications available	-
The FRAX [®] tool has be individual patient models	that in	Latin America	Ethiopia			Web Version 4.3	
oone mineral density (BM	D) at t	Oceania	Iran				1000 1000 1000
		FRAX [®] models have				View Release Notes UDI:	
Aus con pap ava		lation-based cohorts fro ralia. In their most sop				(01)05065010474000(8	012)4.3
	comp	outer-driven and is avai er versions, based on t	ilab Lebanon			Links	
		able, and can be downlo				www.iofbonehealth.org	
	The I	FRAX [®] algorithms give t	Palestine				
	outpu	ut is a 10-year probabi ability of a major osteop	ility Qatar)))
Dr. John A Kanis Professor Emeritus,		r shoulder fracture).	Saudi Arabia			www.nof.org	NATIC OSTEOPU FOUND
University of			South Africa				FOUND
Sheffield			Syria			www.jpof.or.jp	and the second
			Tunisia				SVSOH
			Zimbabwe			www.esceo.org	c (
						2	
Clarification						4532	2552
The University of Sheffiel		ched the FRAX tool in 20 tion (WHO) Collaborating				Individuals with fractur 1st Jun	

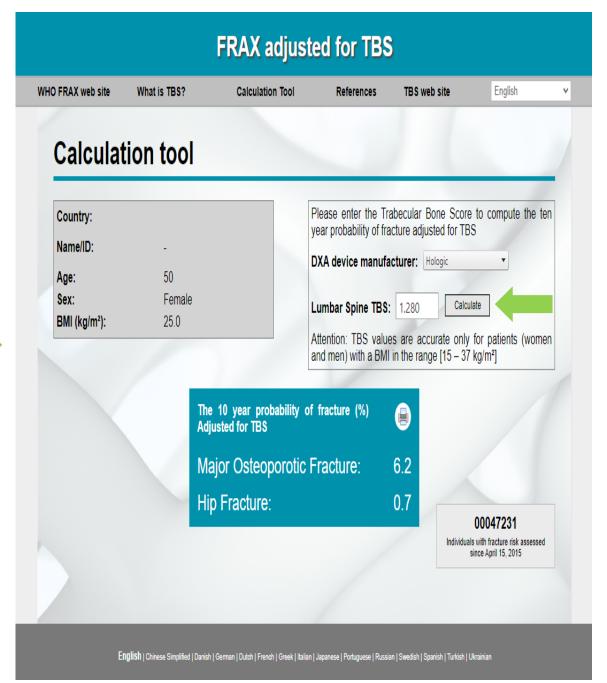
© Centre for Metabolic Bone Diseases, University of Sheffield, UK

English | Arabic | Bengali | Chinese Simplified | Chinese Traditional | Croatian | Czech | Danish | Dutch | Estonian | Farsi | Finnish | French | Georgian | German | Greek | Ioelandic | Italian | Indonesian | Japanese | Korean | Lithuanian | Norwegian | Polish | Portuguese (Portugal) | Portuguese | Romanian | Russian | Serbia | Slovak | Spanish | Swedish | Thai | Turkish | Ukrainian

E

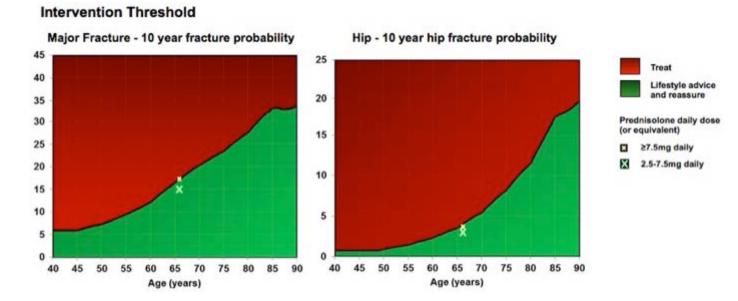





Home	Calculation Tool	Paper Charts FAQ	References	CE Mark E	nglish
Calculation To	ol				
Please answer the question	ons below to calculate t	he ten year probability of fracture with	BMD.		Ŵ
•					
Country: Iran	Name/ID:	About	the risk factors		
Questionnaire:		10. Secondary osteoporosis	No O Yes	Weight Co	onversion
1. Age (between 40 and 90 ye	ars) or Date of Birth		No O Yes	Pounds	kg
Age: Date of Birt		12. Femoral neck BMD (g/cm ²)		Pounus	
50 Y:	M: D:	T-Score V -1.5			Convert
2. Sex	🔾 Male 🔍 Female				
3. Weight (kg)	81	Clear Calculate		Height Co	onversion
4. Height (cm)	180	DMT. 35.6		Inches 🔶	cm
5. Previous Fracture	🔿 No 🔍 Yes	BMI: 25.0 The ten year probability of fracture (%)			Convert
6. Parent Fractured Hip	● No ○ Yes	with BMD			Convent
		Major osteoporotic	5.3		
7. Current Smoking	💿 No 🛛 Yes				

Assessing trabecular microstructure noninvasively via DXA: TRABECULAR BONE SCORE (TBS)

- Analytical tool that performs novel gray-level texture measurements on lumbar spine DXA images
- Low TBS is consistently associated with an increase in the prevalence and incidence of fractures.
- may be used as an adjunct to BMD measurements and FRAX variables to improve fracture prediction
- may have a role in the assessment of fracture risk in secondary osteoporosis.



Adjustment of FRAX Based on Glucocorticoid Dose

Can be done manually as follows:

	Adapta	tion
Glucocorticoid dose	Major fractures	Hip fractures
Low (<2.5 mg)	-20%	-35%
Medium (2.5-7.5 mg)	0%	0%
High (≥7.5 mg)	+15%	+20%

Or automated via FRAX in the UK as below:

Adjustment of FRAX Based on Hip-Spine Discordance

- Effect of LS-FN T-score discordance assessed in Canadian Manitoba BMD database (study population of 36,368)
- 15% had lumbar spine BMD at least 1 SD lower (i.e., 1 T-score) than at the femoral neck
- For every rounded T-score difference of 1 unit adjust FRAX risk of major osteoporotic fracture (MOF) up or down by 10%
 - Example: FN T-score = -1.5, LS T-score = -3.5
 - Difference = 2 units; increase MOF by 20%
 - MOF risk = 18% ➡ adjusted risk = 18% x 1.2 = 21.6%

Leslie WD et al. Osteoporos Int. 2011;22:839-847.

My Frax

Discover the advantages of FRAXplus®

FRAXplus® allows you to modify a probability result derived from conventional FRAX estimates of probabilities of hip fracture and major osteoporotic fracture with knowledge of:

- Recency of osteoporotic fracture
- Higher than average exposure to oral glucocorticoids
- Information on trabecular bone score (TBS)

- Number of falls in the previous year
- Duration of Type 2 diabetes mellitus
- Concurrent information on lumbar spine BMD

About

• Hip axis length (HAL)

Caveat : There is no evidence base available to inform on the accuracy of multiple adjustments. Pragmatically, any adjustment should be made for the most dominant factor, i.e., that which is likely to have the greatest clinical relevance for the estimated probability.

Recency of osteoporotic fracture	~	Information on trabecular bone score (TBS)	~
High exposure to oral glucocorticoids	~	Falls history	~
Type 2 diabetes mellitus	~	Hip axis length	~
Concurrent data on lumbar spine BMD	~		

FRAX	Home Online Calculation	FRAXplus® Paper Charts	About FAQ	Resources My Frax
Му гзах	My Credits: 5	Res	ults My account	Purchase history Log out

Calculation Tool

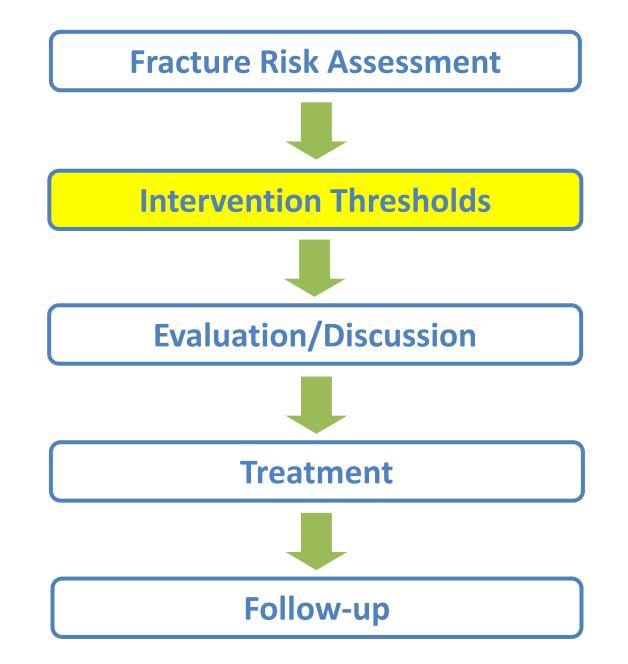
		x ~	Country	🔤 Iran	X V
) Identifica	tion (optional)				
D Identificat	tion (optional)			Individuals with fracture risk assessed :	since 1st June 2011

Questionnaire

1. Age (between 40 and 90 years) or Date of Birth	50	12. Femoral neck BMD	T-score X V
2. Sex	●Female ○Male		
3. Weight	kg 81 kg/cm v	Calculate	Clear
4. Height	cm 180		
5. Previous Fracture	YES	BMI:25	with BMD
	_	THE TEN-YEAR PROBABILI	TY OF FRACTURE
6. Parent Fractured Hip	NO	Major osteoporotic	5.3%
7. Current Smoking	NO	Нір	0.7%
8. Glucocorticoids	NO		
9. Rheumatoid arthritis	NO	Adjust your results, try	r FRAX plus®
10		What does FRAX plus [®] do	? Click here
10. Secondary osteoporosis	NO		
11. Alcohol 3 or more units/day	NO		

Adjust your results with FRAX plus $^{\ensuremath{\mathbb{R}}}$

Please select one of the available adjustment algorithms:

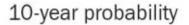

Adjust probability according to recent fractures	~
Adjust probability according to the dose of oral glucocorticoids	V
Adjust probability according to TBS value	~
Adjust probability according to duration of diabetes	V
Adjust probability according to recent falls	V
Adjust major osteoporotic fracture probability according to differences between femoral neck and lumbar spine BMD T-scores	V
Adjusting FRAX hip fracture probabilities according to the hip axis length (HAL)	^

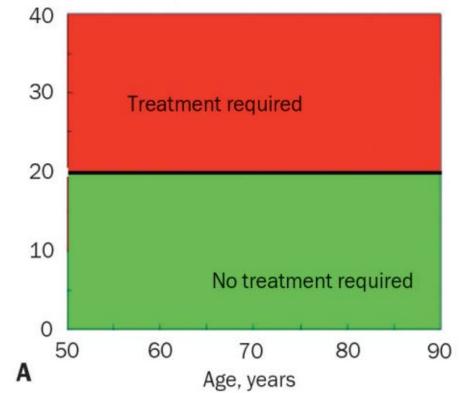
Only available if BMD included in the FRAX calculation.

Hip axis length

Adjust probability

mm




FRAX-based Fixed Intervention Thresholds

The National Osteoporosis Foundation (NOF) popularized Fixed ITs in the US, recommending a 20% cut-off for major osteoporotic fractures and 3% for hip fractures.

In the USA, a HF IT of 3% and a MOF IT of 20% were deemed as cost-effective for intervention.

Due to the vast heterogeneity in epidemiologic and economic characteristics between countries, intervention thresholds should be country specific

Guidance From NOF 2014 and AACE 2020: Whom to Treat After exclusion of secondary cause, treat postmenopausal women and men age ≥50 yr who have:

Osteoporosis

Clinical

Hip or spine fracture

OR

BMD by DXA

 T-score ≤-2.5 in spine, femoral neck, total hip, or 1/3 radius

Osteopenia/Low Bone Mass

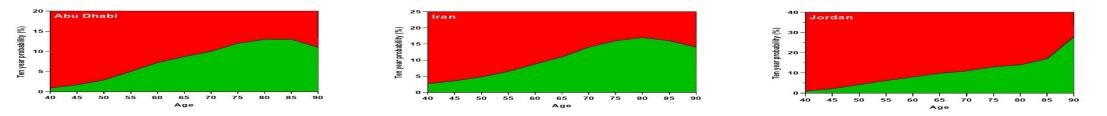
BMD by DXA

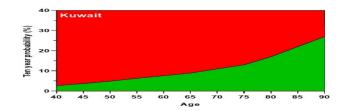
T-score between -1.0 and -2.5

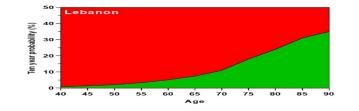
AND

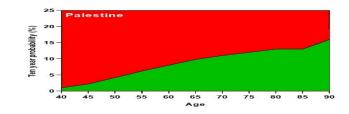
FRAX 10-Yr Fracture Risk

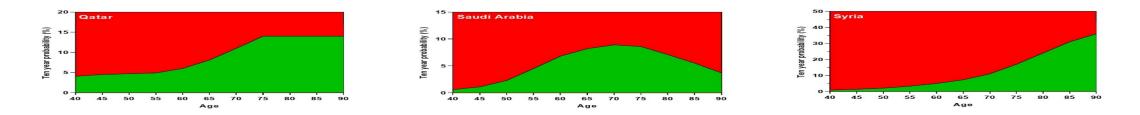
- ≥3% for hip
- ≥20% for major osteoporoticrelated fracture

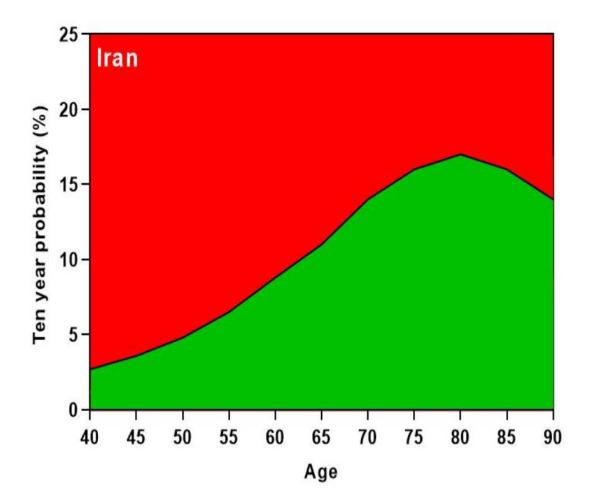

Cosman. Osteoporosis Int. 2014;25:2359. Camacho. Endocr Pract. 2020;26(suppl 1):1.


		High Risk	Very High Risk	
stratification of the patient according to	the risk of fragility fracture	 Previous fracture (vertebral or hip) T-score ≤ -2.5 T-score between -1.0 and -2.5 + FRAX high risk 	 Recent fracture (less than 1 year) Fracture during osteoporosis-approved treatment Multiple fractures T-score very low (≤-3.0) High risk of falls or history of recurrent falls FRAX very high risk Fractures during treatment with drugs that are deleterious to the bone 	
gorithm	For all patients	Correct calcium and	secondary osteoporosis d vitamin D deficiency evention, benefits, and risk of medications	
Treatment algorithm	Pharmacological treatment	 alendronate denosumab risedronate zoledronate Alternate therapy: ibandronate, raloxifene 	 teriparatide* romosozumab* denosumab zoledronate Alternate therapy: alendronate, risedronate 	

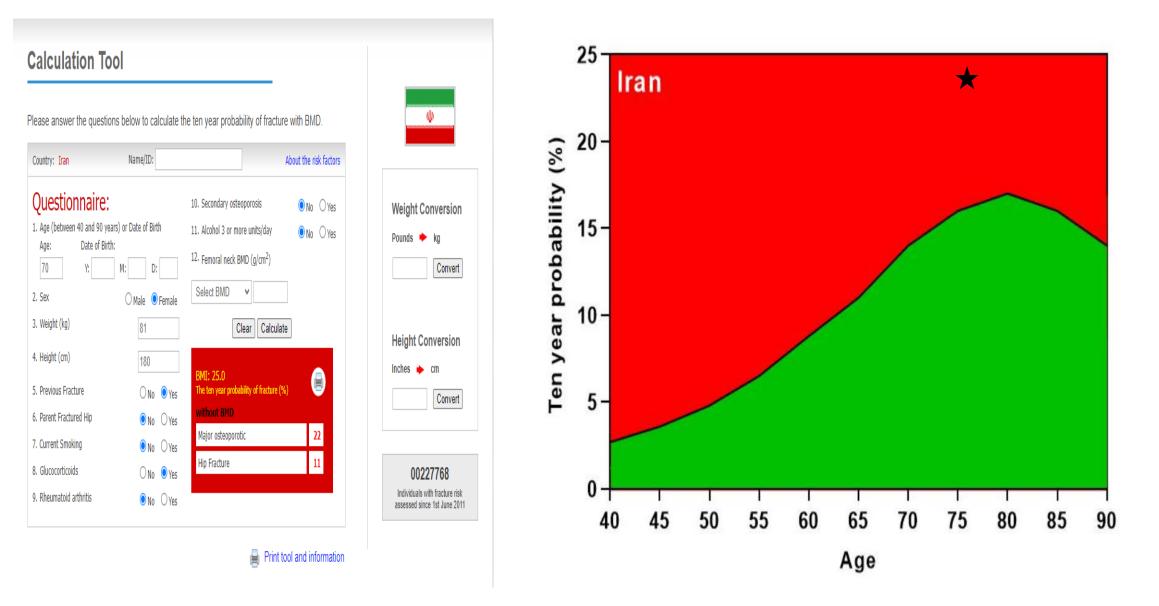

Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, FarookiA, et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelinesfor the diagnosis and treatment of postmenopausal osteoporosis– 2020update. Endocr Pract. 2020;26(Suppl 1):1-46. https://doi.org/10.4158/GL-2020-0524SUPPL


- Many Middle Eastern Countries face hindrances in the BMD assessment due to a lack of densitometry devices and high costs
- Fracture risk assessment tools have revolutionized osteoporosis management by allowing physicians to select patients for therapy based on their absolute fracture risk instead of relying solely on bone mineral density

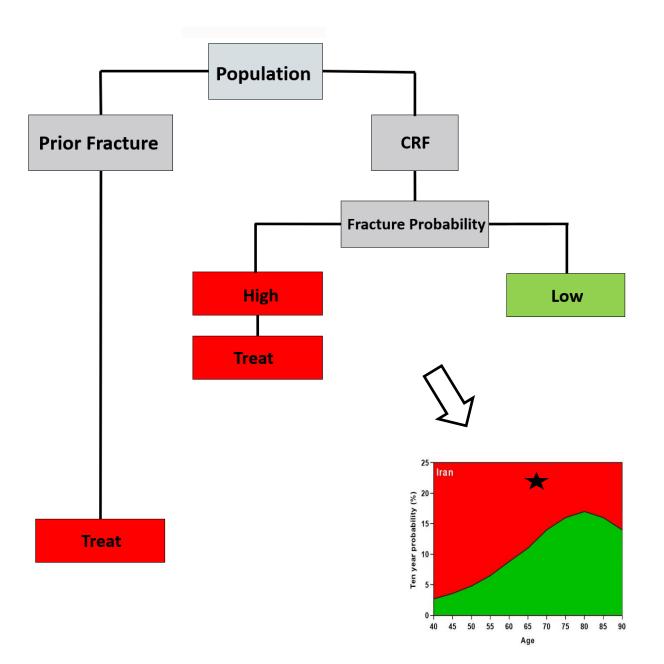

Intervention thresholds as set by FRAX-based 10-year probability (%) of a major osteoporotic fracture for the nine Middle Eastern countries with out availability of bone densitometry

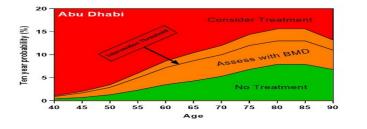


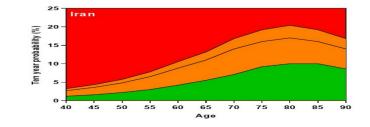
*We have developed age-specific intervention thresholds for the Middle Eastern countries where FRAX models are available

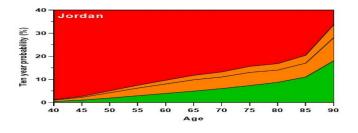

Iran Age-specific FRAX Based Intervention Thresholds

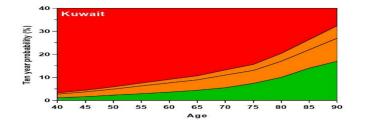
We have developed age-specific intervention thresholds for the Middle Eastern countries where FRAX models are available, which will make it easier for clinicians to use the tool.

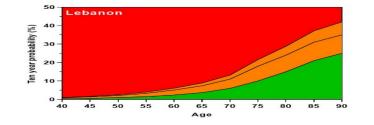

The intervention threshold was set as a woman's 10-year fracture probability if she has a body mass index (BMI) of 25.0 kg/m² and a history of previous fracture without bone mineral density (BMD) and other clinical risk factors.

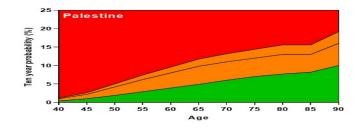

Iran Age-specific FRAX Based Intervention Threshold

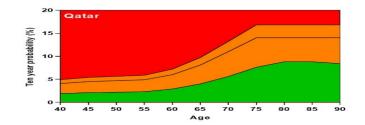


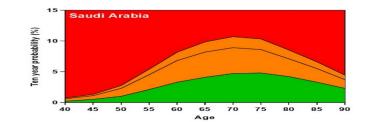

 When bone densitometry is unavailable, reassurance may be provided for those with probabilities below the intervention threshold, and no other clinical considerations and treatment can be considered for those with fracture probabilities above the intervention threshold.

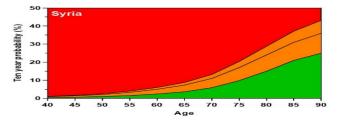


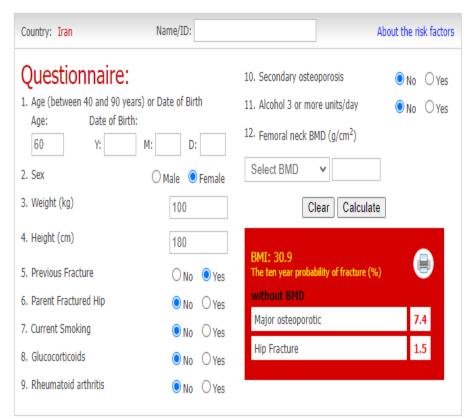

Assessment thresholds as set by FRAX-based 10-year probability (%) of a major osteoporotic fracture for the nine Middle Eastern countries when bone densitometry is available

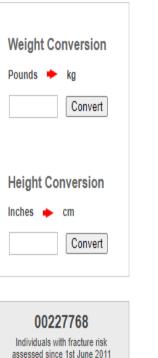


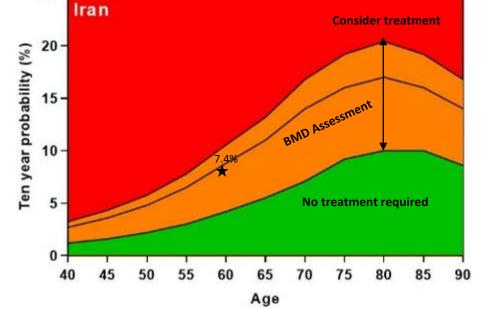




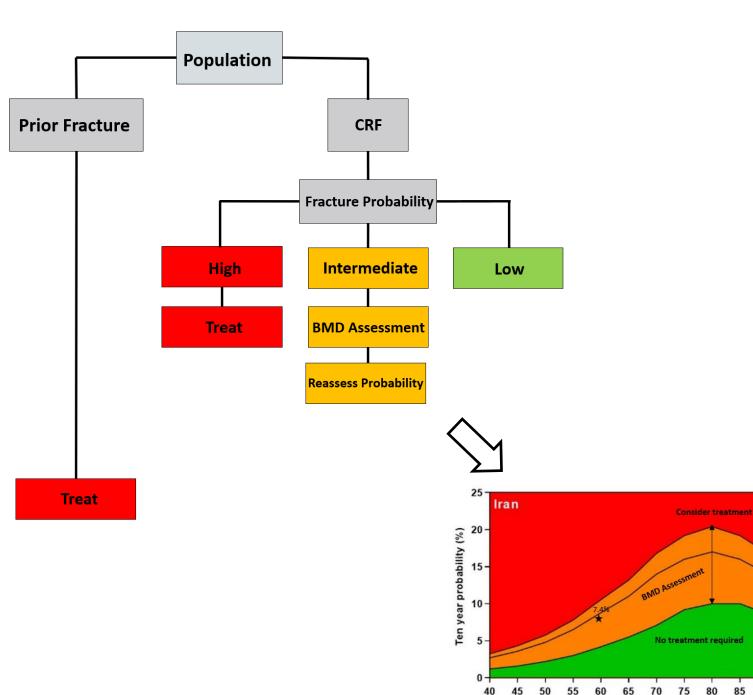


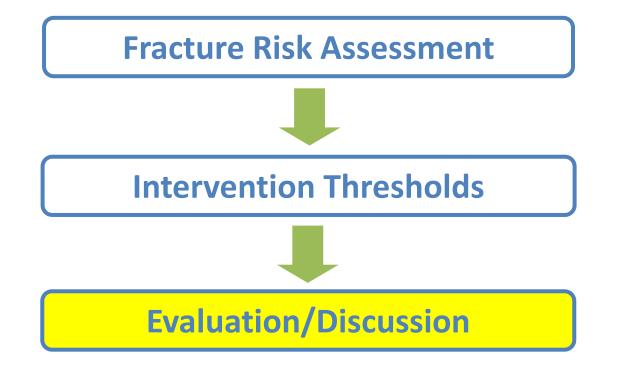


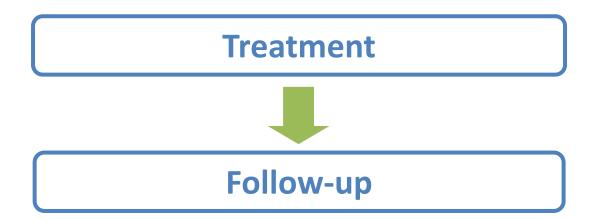

Calculation Tool


Please answer the questions below to calculate the ten year probability of fracture with BMD.

25






📄 Print tool and information

- However, if BMD measurements are available and there are no other clinical considerations, reassurance may be given to men and women with probabilities below the lower assessment threshold.
- Those with probabilities above the upper assessment threshold can be considered for treatment
- those with probabilities between ۲ the lower and upper assessment thresholds can be considered for bone densitometry using dualenergy X-ray absorptiometry, with their fracture probability reassessed afterward.

85 90

