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Genetic Association tests
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Genome-Wide Association Studies (GWAS)
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Genome-wide association studies (GWAS) aim to identify associations of genotypes
with phenotypes by testing for differences in the allele frequency of genetic variants 
between individuals who are ancestrally similar but differ phenotypically.

Genome-wide association studies (GWAS): 
1- Test hundreds of thousands of genetic variants across many genomes to find those 
statistically associated with a specific trait or disease. 
2- Has generated a myriad of robust associations for a range of traits and diseases.
3- Number of associated variants is expected to grow steadily as GWAS sample sizes 
increase. 
4- GWAS results have a range of applications

- Gaining insight into a phenotype’s underlying biology
- Estimating its heritability, 
- Calculating genetic correlations
- Making clinical risk predictions
- Informing drug development programmes
- Inferring potential causal relationships between risk factors and health 

outcomes. 

Introduction to GWAS
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Poor quality data false positives / negatives
Introduction to GWAS

Marees et al. Int J Methods Psychiatr Res. 2018 Jun; 27(2): e1608. 

Steps in QC (plink commands)

1. Sex-check (chr X heterozygosity) (--check-sex)

2. Genotyping Call Rate (SNPs missing individuals) (--geno)

3. Hardy-Weinberg Equilibrium (--hwe) 

4. Minor Allele Frequency (--maf)

5. Sample Call Rate (individuals missing genotypes) (--mind)

6. Proportion of Heterozygosity (--het)

7. Relatedness (--genome)

8. Population Structure / Stratification (--cluster-mds-plot)
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Introduction to GWAS: Quantitative Trait

Linear Regression

Ŷ = α + βX + ε
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Introduction to GWAS: Quantitative Trait

Linear Regression

Ŷ = α + βX + ε

Ŷ = score on phenotype
X = 0, 1 or 2 copies of allele (“G”)
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Introduction to GWAS: Quantitative Trait

Linear Regression

Ŷ = α + βX + ε

Ŷ = score on phenotype
X = 0, 1 or 2 copies of allele (“G”)

β = 0 no association
β > 0 G allele associated with higher score on trait
β < 0 G allele associated with lower score on trait
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Introduction to GWAS: Case-Control

Balding. Nat Rev Genet (2006)

Logistic Regression

Controls Cases
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G/G
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The G allele is associated with disease
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Introduction to GWAS: Case-Control

Balding. Nat Rev Genet (2006)

Logistic Regression

Controls Cases

A/A A/A

G/G
A/A

A/A
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A/A A/A

A/AG/G

G/A
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G/G

G/G

The G allele is associated with disease

β = difference in log odds for cases vs. controls

e(β) = difference in odds
= Odd Ratio (OR)

ln(P/1-P) = α + βX + ε

GWAS & PGS on Type 2 Diabetes - Autumn 2023 - ICED14 -
akbarzadeh.ms@gmail.com



19

Introduction to GWAS: Case-Control

Balding. Nat Rev Genet (2006)

Logistic Regression

Controls Cases

A/A A/A

G/G
A/A

A/A

G/A

A/A

A/A

A/A A/A

A/AG/G

G/A

G/A

G/A

G/A

G/A G/G

G/G

G/G

The G allele is associated with disease

β = difference in log odds for cases vs. controls

e(β) = difference in odds
= Odd Ratio (OR)

Allelic effect is an OR:
OR > 1 increased risk
OR < 1 decreased risk

ln(P/1-P) = α + βX + ε
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Introduction to GWAS: Relatedness

• Only a few in the total sample = drop

Source: Wikipedia
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Introduction to GWAS: Relatedness

• Only a few in the total sample = drop

• Random Effects Model 
Ŷ = α + βX + G + ε

β = fixed effect of the allele
G = genetic relationship random effect Source: Wikipedia
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Introduction to GWAS: Relatedness

• Only a few in the total sample = drop

• Random Effects Model 
Ŷ = α + βX + G + ε

β = fixed effect of the allele
G = genetic relationship random effect

• Genetic Relationship Matrix (GRM)
• Sub-sample of SNPs
• Leave One Chromosome Out (LOCO)

Source: Wikipedia
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Introduction to GWAS

Statistical modeling in GWAS:

1. Linear regression
I. Fixed effect model
II. Random effect mode with GRM (relatedness adjustment)

2. Logistic regression
I. Fixed effect model
II. Random effect mode with GRM (relatedness adjustment)

Advanced modeling: Using Machin Learning
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Visualizing the GWAS results
Manhattan plot QQ-plot



Polygenic Risk 
Scores

What is the
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Introduction to PRS

• Knowing our risk of developing diseases
• Change diet, lifestyle, or medication use
• But how could you know that you're at a 

high risk ?
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Introduction to PRS

• A major risk factor for common diseases such 
as heart disease, cancer, and diabetes is our 
own genetic makeup. 

• New studies show that we can now analyze an 
individual's genes and actually measure that 
risk using something called polygenic risk 
score. 

• Our genes vary from person to person and it's 
why we're not all the same, but some of these 
genetic differences can contribute to our risk 
of complex diseases.
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Introduction to PRS

• For the most common diseases such as heart disease and T2D, it's 
often not just one or two of these genetic changes that are important. 

• There is many of them, each having a small effect on the polygenic 
risk.
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Introduction to PRS

• For the most common diseases such as heart disease and T2D, it's 
often not just one or two of these genetic changes that are important. 

• There is many of them, each having a small effect on the polygenic 
risk.

POLY many GENIC to do with genes RISK SCORES scoring a risk.
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Introduction to PRS

GWAS & PGS on Type 2 Diabetes - Autumn 2023 - ICED14 -
akbarzadeh.ms@gmail.com



Polygenic Risk Score : 
The first challenge is “Correlated SNPs”
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DS: Discovery Sample
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Polygenic Risk Score : Manhattan plot: Clumped 
SNPs 

DS: Discovery Sample



Polygenic Risk Score: The second challenge is:
How many SNPs do we need?
P+T method (Traditional Method) 
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The discovery set in this study: 

Discovery sample: 
180,834 affected individuals and
1,159,055 controls (48.9% non-
European descent)
Effective Sample size: 79,074
#SNP: 10,454,875

In TCGS (target data) after QC:
#SNP: 555,835
#common SNPs: 538,505 
(96.88%)

After Clumping:
#SNP: 94,532

S1: 0.00 , 1
S2: 0.00 ,0.5
S3: 0.00 , 0.2
S4: 0.00 , 0.1
S5: 0.00 , 0.05
S6: 0.00 , 0.01
S7: 0.00 , 0.001
S8: 0.00 , 0.0001
S9: 0.00 , 0.000001
S10: 0.00 , 0.00000005

Pvalue sets
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Polygenic Risk Score: How many SNPs do we need? 
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PT Threshold AUC N.SNPs

PT10 P<5E-08 0.6454 473

PT9 P<1E-06 0.6495 660

PT8 P<1E-04 0.6574 1528

PT7 P<0.001 0.6632 3026

PT6 P<0.01 0.6621 8439

PT5 P<0.05 0.6549 20120

PT4 P<0.1 0.6527 29861

PT3 P<0.2 0.6503 44054

PT2 P<0.5 0.6442 70489

PT1 P<1 0.6396 94517

Polygenic Risk Score: How many SNPs do we need? 
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Introduction to PRS
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Introduction to PRS
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Calculate LD corrected weights by LDpred, PRSice and SBayesR, and SBayesRC. 
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Introduction to PRS
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Introduction to PRS

GWAS & PGS on Type 2 Diabetes - Autumn 2023 - ICED14 -
akbarzadeh.ms@gmail.com



40

Introduction to PRS
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Heritability
What is the
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Introduction to Heritability

Heritability (h2) quantifies the degree to which inter-individual differences 
and resemblance in the population are due to genetic factors.
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Introduction to Heritability

Heritability (h2) quantifies the degree to which inter-individual differences 
and resemblance in the population are due to genetic factors.

If the value, Y, of trait (=phenotype) can be modelled as 

Y = G +  E

Then h2 = var(G) / var(Y), i.e. proportion of trait variance 
explained by genetic factors.

Nice definition but not very useful
unless we can observe G!
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Any question?
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Definition of T2D in 
TCGS

and 
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American Diabetes Association (ADA) definition

source: www.diabetes.org
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Two general types of definition: ADA definition
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TLGS Phase Normal Prediabetes T2D Unclear

Phase 1 6,701 1,062 319 2,812

Phase 2 6,481 1,131 466 2,962

Phase 3 7,224 1,057 596 2,284

Phase 4 6,680 1,976 904 1,819

Phase 5 6,027 2,195 1,142 2,153

Phase 6 5,121 1,837 1,305 3,358

ADA 5,780 4,130 2,167 1



American Diabetes Association (ADA) definition

TLGS Phase Normal Prediabetes T2D

ADA 5,780 4,130 2,167

Control Case

Excluded
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1000 genome projection: Principal Components
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Quality control before GWAS (imputed data)
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Imputed data: 61,999,570 (~62M)

Imputation Information > 0.50   58,124,808

HWE assumption: 10e-5  55,223,222

Missing per SNP 0.05  49,746,903

MAC 5 & MAF 0.05  12,419,966

Remove Duplicate  12,046,290

Remove Reference allele from Multi-Allelic variants  10,945,256 (~11M)  
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Imputed data: 61,999,570 (~62M)

Imputation Information > 0.50   58,124,808

HWE assumption: 10e-5  55,223,222

Missing per SNP 0.05  49,746,903

MAC 5 & MAF 0.05  12,419,966

Remove Duplicate  12,046,290

Remove Reference allele from Multi-Allelic variants  10,945,256 (~11M)  



GWAS Scenarios: 
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Covariates
(2 settings)

Models
(3 MLM)

Phenotypes
(7 settings)

Y

fastGWAS

Age, sex, PC{1:10}

Age, sex, BMI, PC{1:10}

REGENIE
(SPA and firth) Age, sex, PC{1:10}

Age, sex, BMI, PC{1:10}

PLINK

> 40 GWAS Models

fastGWA mixed linear model,
LOCO, COJO, mtCOJO



Manhattan plot of the T2D GWAS
(Adjusted for age – sex – 10PCs)

TCF7L2 (rs7903146)
OR ~2, P < 10-10



Manhattan plot of the T2D GWAS
(Adjusted for age – sex – 10PCs)

Manhattan plot of the T2D GWAS adjusted for 
(Adjusted for age + sex + 10PCs + PRS)

rs7903146; TCF7L2



Heritability – T2D
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Familial and SNP-based heritability are reported based on two relatedness threshold, 0.025 and 0.05, 
and adjusted by age, sex, 10 PCs, and with/without BMI.

Method Threshold Heritability SE P-value

Single GRM
0.025 0.391 0.0144 2.56e-3

0.05 0.280 0.0120 8.72e-3

bigK/smallK

pedigree
0.025 0.367 0.045 3.8e-4

0.05 0.364 0.0457 2.77e-4

unrelated
0.025 0.227 0.068 3.8e-4

0.05 0.232 0.068 2.77e-4

Without adjusted for BMI

It needs to say that there is 8% - 13% still-missing heritability. 



Polygenic Risk Score (PRS) Analysis
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T2DPrediabetesNormal

1,2281,7641,746

Unrelated Sample size in each group (grm0.05)

۵٧

T2DPrediabetesNormal
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Total Sample size in each group
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Polygenic Risk Score (PRS) Analysis



۵٨GWAS & PGS on Type 2 Diabetes - Autumn 2023 - ICED14 -
akbarzadeh.ms@gmail.com

Polygenic Risk Score (PRS) Analysis
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PreT2D vs ControlT2D vs Control
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Polygenic Risk Score (PRS) Analysis



Body Mass Index (BMI) and Family History (FH)
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Interaction effect on T2D
(BMI × PGS & FH × PGS)
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Investigating on the interaction (BMI × PGS) and (FH × PGS)

BMI: BMI ≥30, BMI < 30

 FH: Family history of T2D (related to the first degree of individual, GRM based 
selection)

A multinomial logistic regression was employed to evaluate the genetic 
susceptibility risk for T2D within BMI categories. 

 The model was adjusted for covariates, including age, sex, PRS, 10PCSs, BMI×PRS
and FH×PRS. 
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PreT2D vs NormalT2D vs Normal
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Investigating on the interaction (BMI × PGS)

P-value of the interaction term in the model was not statistically significant.



۶٣

T2D versus Normal people
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P-value of the interaction term in the model was not statistically significant.



Regression to normoglycemia 
and 

Progression to T2D 
among 

Prediabetics
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TLGS Phase Normal Prediabetes T2D

ADA 5,780 4,130 2,167

Control Case
Excluded

Regression to normoglycemia and Progression to T2D among Prediabetics

T2DPrediabetesNormal

1,2281,7641,746

Unrelated Sample size in each group (grm0.05)

Followed up for ~10yrs (Phase 3 to Phase6
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Regression to normoglycemia and Progression to T2D among Prediabetics

T2DPrediabetesNormal

1,2281,7641,746

Unrelated Sample size in each group (grm0.05)

Followed up for ~10yrs (Phase 3 to Phase6

Prediabetes
1,764 

Regressed to normal
120

Remained Pre-T2D
62

Progressed to T2D
201
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We followed the prediabetes participants through phase 3 to phase 6
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Regression vs  remained prediabeticsProgression vs  remained prediabetics
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Body Mass Index (BMI) and Family History (FH)
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Interaction effect on Progression & Regression
(BMI × PGS & FH × PGS)
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Regression vs Remained Prediabetic Progression vs Remained Prediabetic 
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Investigating on the interaction (BMI × PGS)
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P-value of the interaction term in the model was not statistically significant.
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Investigating on the interaction (FH × PGS)
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I. I need to add that the AUC of the prediction models by adding PRS were statistically 
higher than the models with only other covariates. So, adding a PRS to the models as a 
new risk factor can improve the prediction power. 

II. As a result of this study, it is claimed that researchers or clinicians can independently 
rely on the PRS information, in addition the use of FH and/or BMI information. 

Conclusion
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GEMIRAN team

 Queensland University.
 Oxford University.
 University of Pennsylvania.
 University of Michigan. 
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