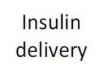

The diabetes technology landscape





Overview & Recent Advancements in Continues Glucose Monitoring Systems

Seyed Adel Jaded, M.D.

Internist, Endocrinologist, Gabric Diabetes Education Association

14th ICED

23 Nov 2023

Tehran, Iran

BRIEF NOTES

An abnormal hemoglobin in red cells of diabetics

In a survey carried out on 1200 patients from Tehran University Hospitals, in addition to three rare hemoglobins which are under investigation both in our department here and at the University of Cambridge, two patients also showed an abnormal fast moving hemoglobin fraction: both were suffering from diabetes mellitus.

Studies were started to investigate the occurrence of this abnormal fraction in other diabetics, and in 47 cases examined in the last three months, including rrchildren with severe diabetes mellitus, the additional fraction was detected. Routine hematological examination according to standard methods² gave normal results in the majority of cases.

Electrophoresis of hemoglobin was carried out on cellulose acetate according to Graham and Gruenbaum²; the abnormal fraction does not separate well by this method, but there is a broadening of the Hb A band. In starch gel electrophoresis with tris-EDTA-borate buffer pH 8.r (ref. r) the additional fraction moves a little faster than Hb A and slower than Hb J (Iran)⁶ (Fig. 1).

Agar gel electrophoresis in citrate buffer pH 6.2 by the method of Robinson et $al.^4$ is the method of choice for the separation and demonstration of this fraction which moves in front of Hb A to the cathode in the same position as Hb F (Fig. 2).

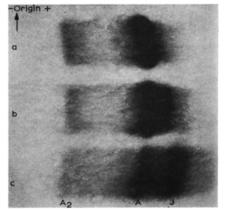
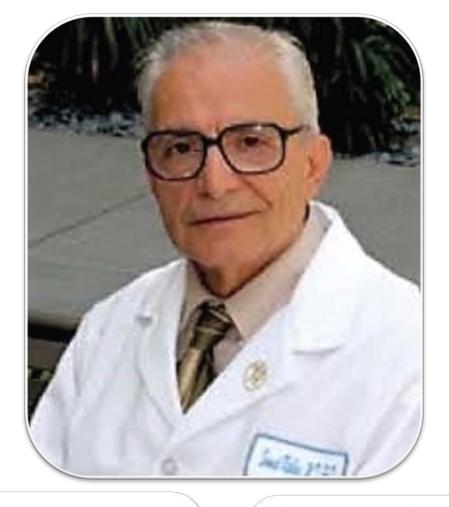



Fig. 1. Starch gel electrophoresis in tris-EDTA-borate buffer, pH 8.1. o-Dianizidine stain, ref. 7, a: normal; b: Hb A + Hb X; c: Hb A + Hb J (Iran). Clin. Chim. Acta, 22 (1968) 296-298

Table 1—HbA1c: a history

1966: Holmquist and Schroeder identify five subtypes of hemoglobin A, including HbA_{1c}.
1968: Rahbar recognizes that HbA_{1c} is elevated in people with diabetes.
1975: Koenig and Cerami suggest that HbA_{1c} is related to metabolic control.
1993: DCCT establishes HbA_{1c} as a valuable clinical marker in people with type 1 diabetes.
1998: UKPDS establishes HbA_{1c} as a valuable clinical marker in people with type 2 diabetes.
2010: ADA recommends using the HbA_{1c} test to diagnose diabetes and prediabetes.

M. H. Azizi, M. Bahadori, F. Azizi

History of Contemporary Medicine

Breakthrough Discovery of HbA1c by Professor Samuel Rahbar in 1968

Mohammad Hossein Azizi MD+1, Moslem Bahadori MD1, Farzaneh Azizi DVM2

Cite the article as: Azizi Mil, Baladeri M, Azizi F. Breaktheoigh Discovery of BbA1c by Professor Sunnel Rabbur in 1968. Arch Inter Med. 2013, 16(12): 743-745.

Tehran University Hoopitals, in addition to three rare hemoghebin which are under investigation both in our department here and at the University of Cambridge, two patients also showed an abnormal fast moving hemoglobin fraction: both were suffering from diabetes mellins. "He also added that more studies were timitatel to explore the occurrence of this abnormal fast-time in other diabeties and HPA1c was detected in 47° cases surveyed within the next three monts, including two children with severe diabetes mellins. In most cases, routin hemotological examination according to standard methods yielded normal results (Figure 1).³ This paper has been cited 34 times.

Professor Samuel Rahbar (May 12, 1929 – November 10, 012) was an outstanding scholar who discovered the presence of an abnormally increased amount of glystad hemoglobia (HbA1c) in the blood of patients with diabetes mellins. This mominental discovery led to a significant improvement in the diagnosis and management of millions of diabetics all over the works.

From a biochemical point of view, an inversable non-enzymatie glycation of the best chain of behumgdoin A results in HbAte formation which is currently used as a major biological marker and indicator of long-term glycemic control in diabetic patients.¹ The first elimically useful test for HbAte content was introduced around 1977 to monitor the management of diabetes, although its accuracy was still poor. Then in 1991, the first commercial immunosasay test became available, and HbAte manaal immunoassay analyzer has been in use since 1992.² Importantly, the test is now standardized and used world-over and, more recently, for the diaponsis of diabetes.³

Samuel Rabbar was born in Hamadan, Iran in 1929. He enrolled in the Tehran University Medical School and graduated in 1953. In due course, Dr. Rabbar practiced medicine in Abadan and Tehran till 1959. Thereafter, he started his postloctoral immunology fellowship at Tehran University and receive this PhD in 1963. He

was promoted to Assistant Professor at the Department of Immology and then became an Associate Professor in 1963.⁴ His influential paper and a genuine breakthrough entitled "Abnormal Hennoglobin in Red Cells of Diabetics" was published in an international journal of clinical chemistry and diagnostic labs-

ratory medicine named *Clinica Chimica Acta* in October 1968. There he wrote: "In a survey carried out on 1200 patients from Anthres' allinitation: 'Audiony of Mohioli Science of the IE. O func Tetun. Inn. "Centropoulling under and reprints: Mohinumad-Hosein Actin MD, Acadany of Modela Science of the IE. of Jun, Tetun. Inn. 16: 49-52, 253-956. Guodi. attrijum.e. it is

Accepted for publication: 18 November 2013

<text><text><text><text><text><text><text><text>

Figure 1. Professor Rahbar's paper in Clinica Chimica Acta, Volume 22, Issue 2, October 1968, Pages 296–296 (Available from: http://dx.doi. org/10.1016/0009-8981(68)90372-0 Accessed 4.9.2013.)

Between 1968 and 1969, Professor Rahbur was a visiting professor at the Department of Medicine at the "Ather Einsien College of Medicine" in New York: and he collaborated with Profescantly contributed to the athyl of sickle cell anemia in children ¹⁶to protein to Tahran, Professor Rahbur became full profesor in 1970 and was assigned a Director of the Department of Applied Biology at the Medical School of University of Tahran, In additon to HAIA cl discovery, Dr. Rahbur examined 220,000 blood samples over a period of 15 years from different hospitals in Tahran and eventually detected II new variants of benoglobin in Iran (Figure 2). For nomenclature of these new hemoglobins, Professor Rahbur used Persin work in his papers such as Iran.

Archives of Innuin Medicine, Volume 16, Number 12, December 2013 743

The Start of Something Good: The Discovery of HbA₁, and the American Diabetes Association Samuel Rahbar Outstanding Discovery Award

Sometimes, a scientific achievement Diabetes Association (ADA) acknowledged Samuel Rahbar, MD, PhD, with just such an honor—the Samuel Rahbar Outstanding Discovery Award for a contribution to the study and treat-

dry weight) but in 1960, it became one of the first proteins to have its structure solved (1). That gave researchers unprecedented insight into the connection between a protein's structure and its function. Linus Pauling, working on the protein from another angle, discovered that mentor, Rahbar returned to Inn to establish such a research program. Rahbar hoped to find novel hemoglobin variants hidden in the blood of his compatriots.

Gearing up—The tool of choice for analyzing hemoglobin variants at the time

Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta. 1968; 22:296-8.

Gebel E. *Diabetes Care*. 2012; 35:2429-31.

Azizi MH, et al. Arch Iran Med. 2013; 16:743 – 45.

BRIC

25 years later: the DCCT stablished the importance of HbA_{1c}

Jo	The New England ournal of Medicin	ie
	©Copyright, 1993, by the Massachusetts Medical Society	
Volume 329	SEPTEMBER 30, 1993	Number 14

THE EFFECT OF INTENSIVE TREATMENT OF DIABETES ON THE DEVELOPMENT AND PROGRESSION OF LONG-TERM COMPLICATIONS IN INSULIN-DEPENDENT DIABETES MELITUS

THE DIABETES CONTROL AND COMPLICATIONS TRIAL RESEARCH GROUP*

Abstract Background. Long-term microvascular and neurologic complications cause major morbidity and mortatily in patients with insulin-dependent diabetes melitus (IDDM). We examined whether intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range could decrease the frequency and severity of these complications.

Methods: A total of 1441 patients with IDCM — 726 with no reincopathy at base line (the primary-prevention cohort) and 715 with mild retinopathy (the secondaryintervention cohort) were randomly assigned to intersive therapy administered either with an external issuin pump or by three or more daily insulin injections and guidod by request Ibiod glucose monitoring or to conventional therapy with one or two daily insulin injections. The patients were followed for a mean of 65 years, and the appearance and progression of retinopathy and other complications were assessed regulary.

Results. In the primary-prevention cohort, intensive therapy reduced the adjusted mean risk for the development of retinopathy by 76 percent (95 percent confidence

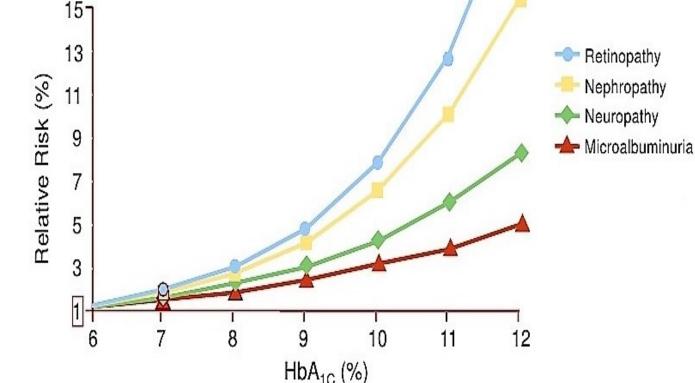
INSULIN-dependent diabetes mellius (IDDM) is accompanied by long-term microwacular, neurologic, and macrowacular complications. Although the daily management of IDDM is burdensome and the specter of metabolic decompensation ever-present, long-term complications, including retinopathy, nephropathy, neuropathy, and cardiovascular disease, have caused the most morbidity and mortality since the introduction of insulin therapy.¹⁵ The prevention and amelioration of these complications have been major goals of recent research.

Although studies in animal models of diabetes³³ and epidemiologic studies⁶⁴ implicate hyperglycemia in the pathogenesis of long-term complications, previ-

Address reprint requests to the DCCT Research Group. Box NDBC/DCCT, Bethesda, MD 20892.

Supported table cooperative agreements and a research contrast with the Dhition of Dubtens, Endocrinology, and Matable Dhatassen of the National Instinet of Dubtens and Digotive and Kalney Diseases and by the National Iteratage, and Bhood Institust, the National Ige Institute, the National Center for Research Resources, and various corporate sponsors (Island in *Dubtens Care* 1992;10:1-19).

*A complete list of the persons and institutions participating in the Diabetes Control and Complications Trial Research Group appears in the Appendix.


interval, 62 to 85 percent), as compared with conventional therapy. In the secondary-intervention cohort, intensive therapy slowed the progression of retinopathy by 54 per cent (95 percent confidence interval, 39 to 66 percent) and reduced the development of proliferative or severe nonproliferative retinopathy by 47 percent (95 percent confidence interval, 14 to 67 percent). In the two cohorts combined, intensive therapy reduced the occurrence of microalbuminuria (urinary albumin excretion of >40 mg per 24 hours) by 39 percent (95 percent confidence inter val. 21 to 52 percent), that of albuminuria (urinary albumin excretion of ≥300 mg per 24 hours) by 54 percent (95 percent confidence interval, 19 to 74 percent), and that of clinical neuropathy by 60 percent (95 percent confidence interval, 38 to 74 percent). The chief adverse event associated with intensive therapy was a two-to-threefold in crease in severe hypoglycemia.

Conclusions. Intensive therapy effectively delays the onset and slows the progression of diabetic retinopathy, nephropathy, and neuropathy in patients with IDDM. (N Engl J Med 1993;329:977-86.)

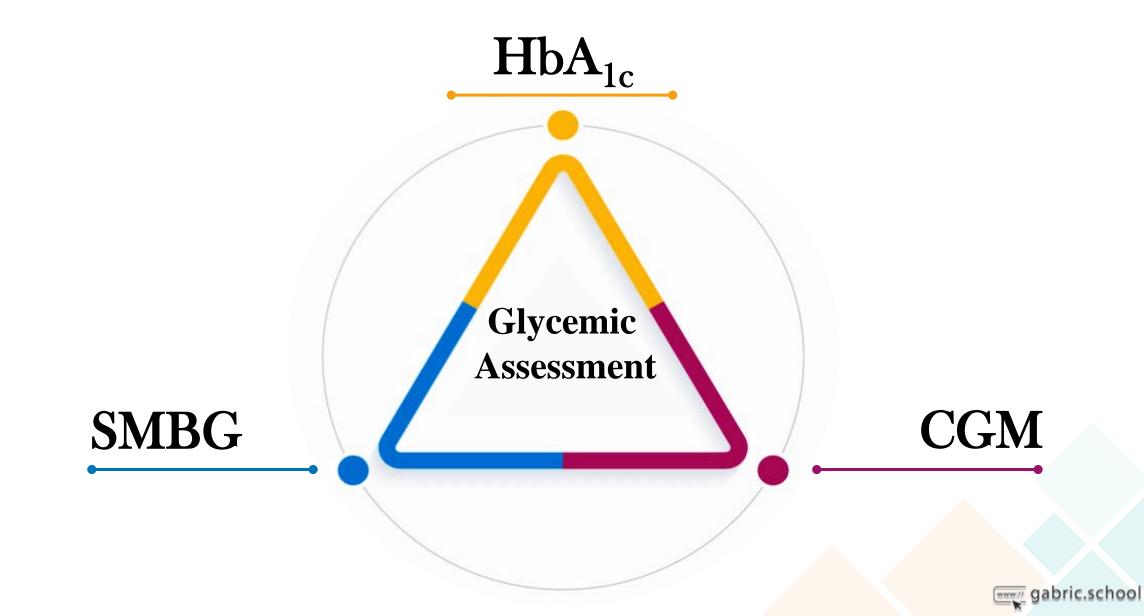
ous clinical trials have not demonstrated a consistent or convincing beneficial effect of intensive therapy on them.⁵¹¹ A recent publication from the Stockholm Diabetes Intervention Study demonstrated a more uniform beneficial effect of intensive therapy in patients with established complications, despite the apparent crossover of most conventionally treated patients to intensive therapy during the trial.¹² The Diabetes Control and Complications Trial was

The Diabetes Control and Complexations Train was a multicenter, randomized Complexations of the designed to compare intensive with conventional diabetes therapy plications of 10DM.^{15,15} The intensive-therapy regimen was designed to achieve blood glucose values as close to the normal range as possible with three or more daily insulin injections or treatment with an insulin pump. Conventional therapy consisted of one or two insulin injections per day. Two cohorts of patients were studied in order to answer two different, but related, questions: Will intensive therapy prevent the development of diabetic retinopathy in patients with in or retinopath (diabetic retinopathy in patients with in the retinopath (diabetic retinopathy in patients with inten-

The New Expand Assume of Maximum Grandmailed Stam region og om Annano 14, 32 (10). For a removal over mfs, No other serve validead permission. Copyright & 1983 Manaachawite Medical Society Ad rights reserved.

GABRIC Viewer International Diabetes Peretaion Member

The limitation of HbA_{1c} officially stated in "the Standards of Care 2018"



 HbA_{1C} does not provide a measure of glycemic variability or hypoglycemia. For patients prone to glycemic variability, especially patients with T₁DM T₂DM with severe insulin deficiency, glycemic control is best evaluated by the combination of results from HbA_{1C} and SMBG or CGM.

Glycemic Control Assessment

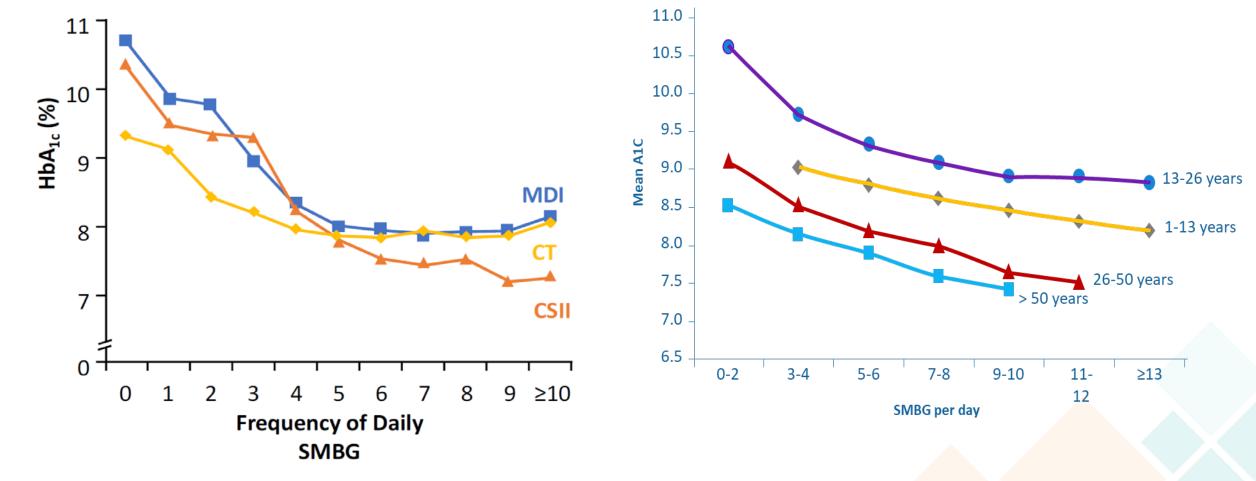
Really hard to achieve targets

- 8-10 SMBG/day (like CGM)
- 6-8 injections/day (like CSII)
- Pre-attention to snacks, exercise
- Accurate carb counting
- Skills, motivation, perseverance, support, education... and <u>LUCK</u>!

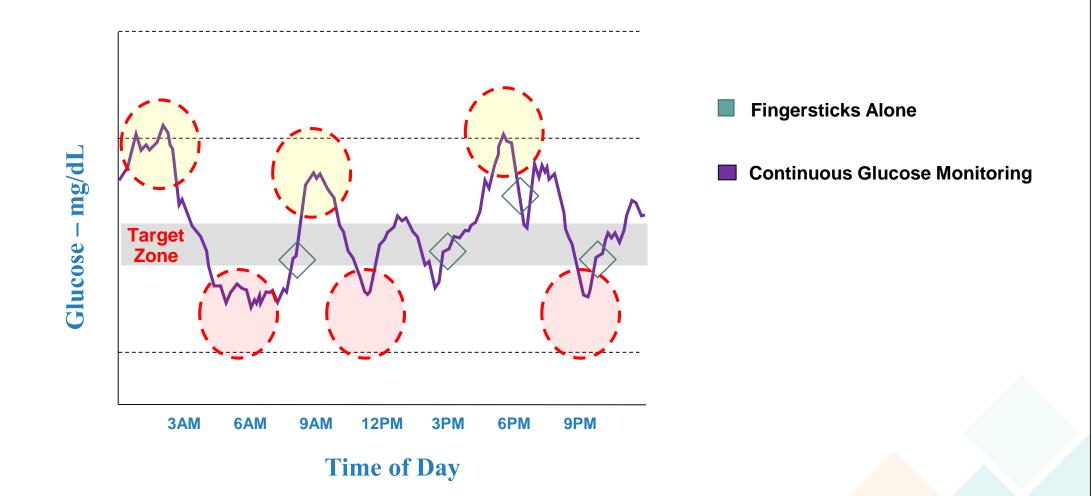
All the above, for everyday for the rest of your life!

DPV T1D Exchange Swedish Registry UK NDA 7,5 8.5 9.5 6.5 7 8 9 10 **DPV: Diabetes-Patienten-Verlaufsdokumentation** HbA1c NDA: National diabetes Audit

Ziegler, Ped Diabetes, 2011 Feb


Danne T, et al. Pediatr Diabetes 2018;19:979–84; Miller KM, et al. Diabetes Care 2015;38:971–8 Lind M, et al. N Engl J Med 2014;37:1972–82; National Diabetes Insulin Pump Audit 2016–2017. Available at: https://www.hqip.org.uk/wp-content/uploads/2018/06/National-Diabetes-Insulin-Pump-Audit-Report-Main-Report-2016-2017.pdf

T₁DM: correlation between greater SMBG frequency and lower HbA_{1C}

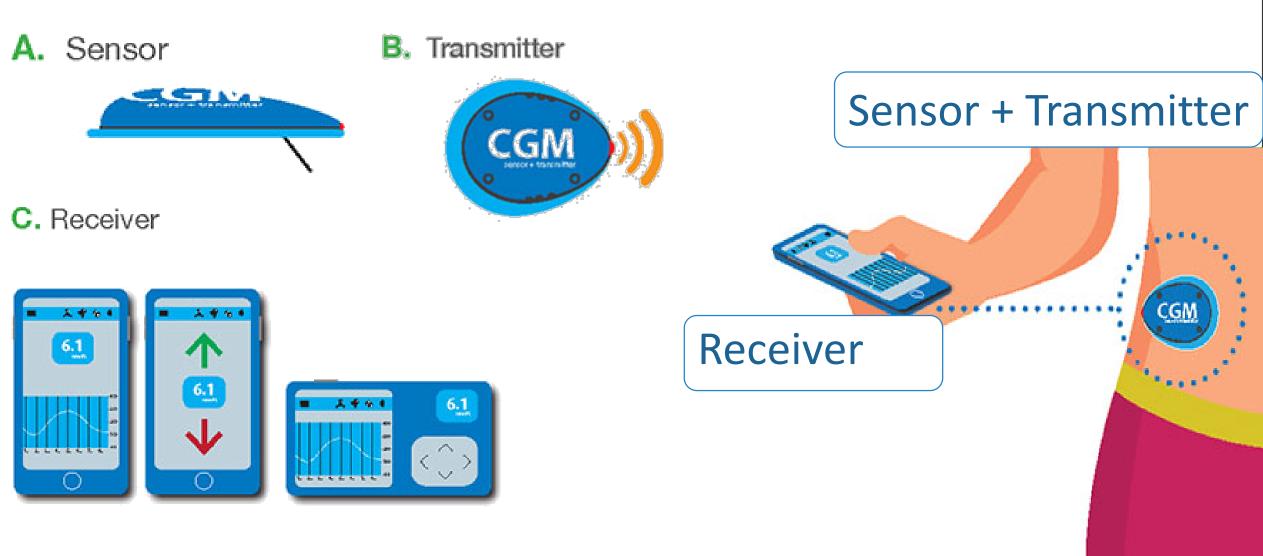


Ziegler R, et al. Pediatr Diabetes. 2011;12(1):11-7.

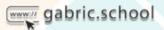
Miller KM, et al. Diabetes Care. 2013;36:2009-14.

CGM reveals insights beyond SMBG

Internationa Diabetes Federation


New means of control Continues Glucose Monitoring

Components of CGMs



Current availability

and use of CGMSs

Key Players Within The CGM Industry

gabric.schoo

1999: Medtronic MiniMed

Dexcom®

2006: Dexcome STS

2008: Freestyle Navigator

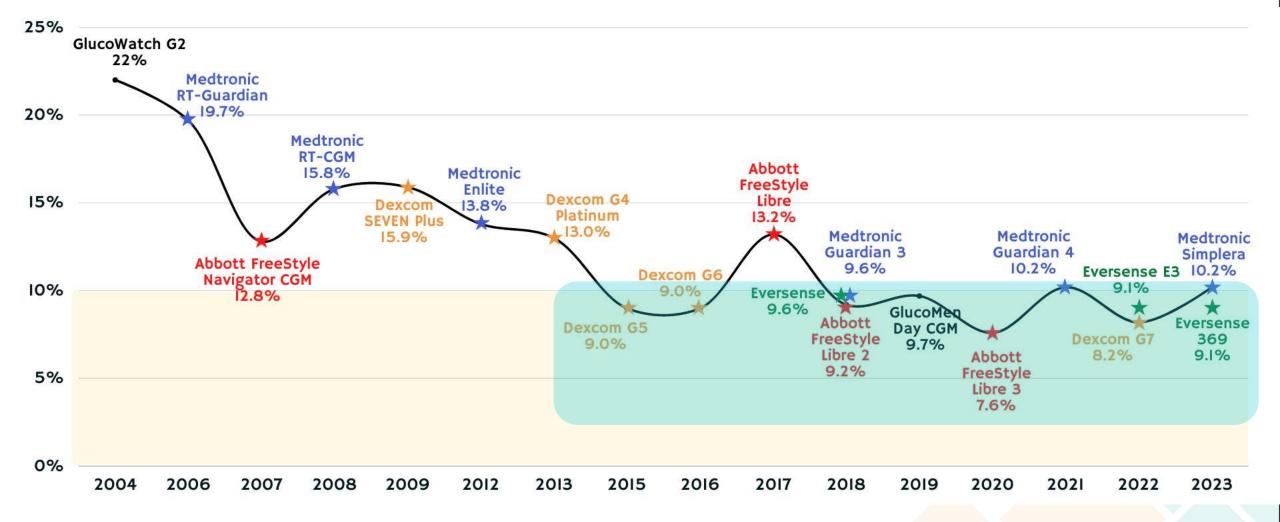
Olczuk et al. (2017). A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.

Most popular CGMs

Accuracy

The mean absolute relative difference (MARD)

- Currently the most common metric used to assess the performance of CGM systems.
- MARD is the average of the absolute error between all CGM values and matched reference values.

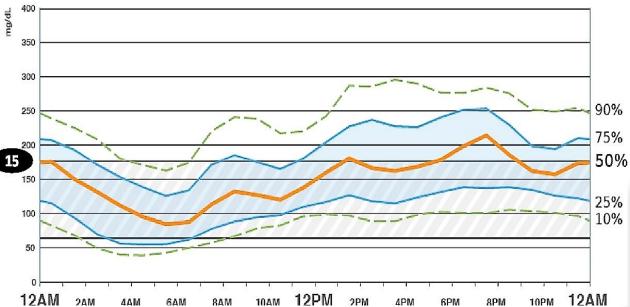


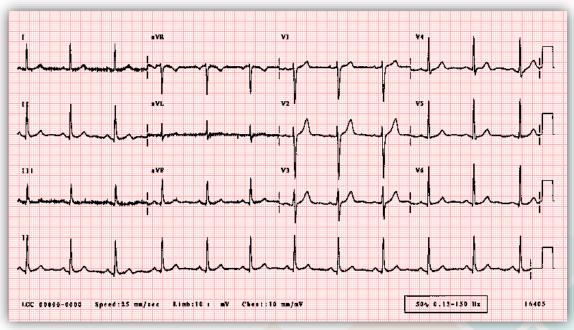
International consensus on use of continuous glucose monitoring. Diabetes care. 2017;40(12):1631-40.

Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes & metabolism journal. 2019;43(4):383-97.

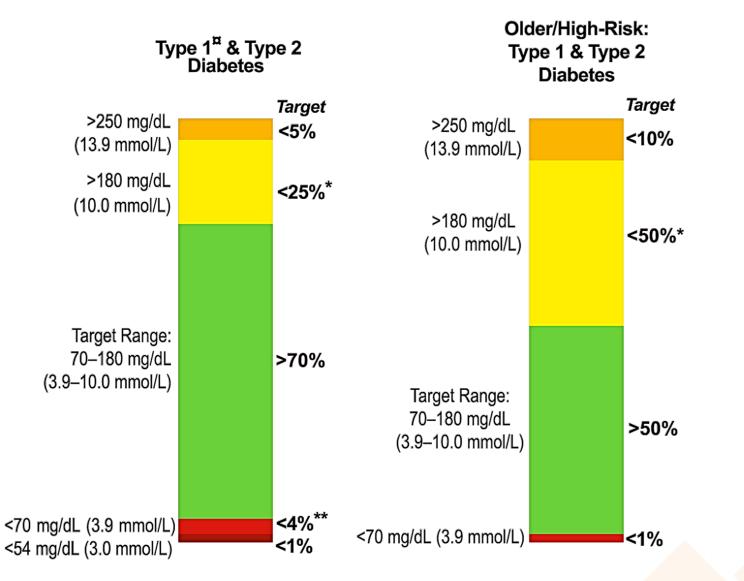
Accuracy timeline of CGM devices

gabric.school


GABRIC

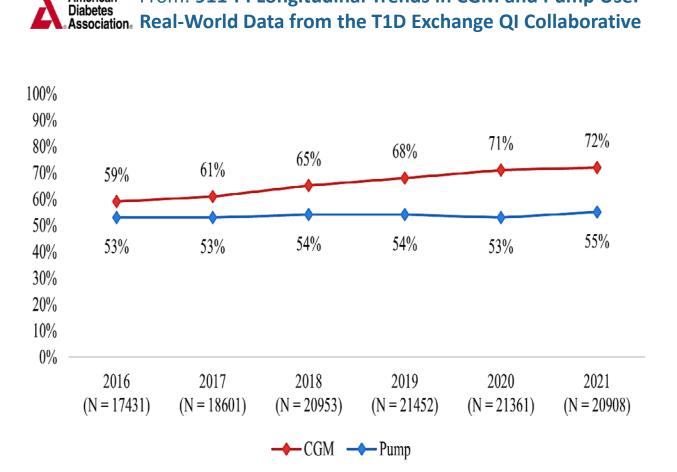

International Diabetes Federation

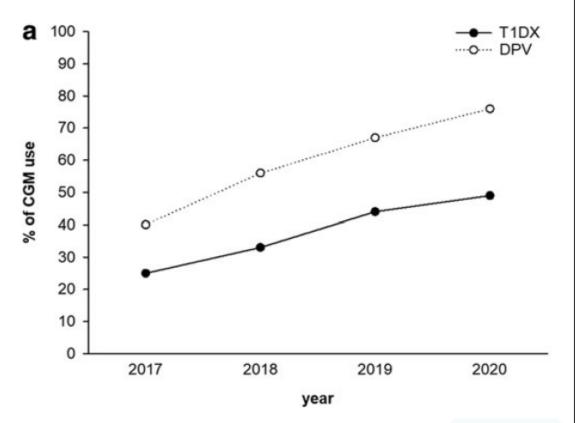
AGP*: The New ECG



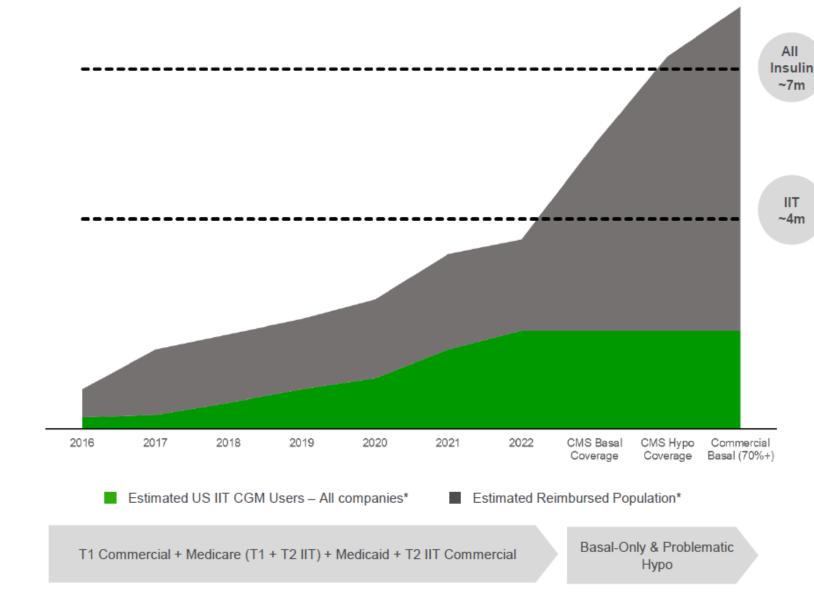
* Ambulatory Glucose Profile

CGM-based targets for different diabetes populations


Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593-603.


Trend in CGM Use

American


From: 911-P: Longitudinal Trends in CGM and Pump Use:

DeSalvo DJ, et al. *DIABETES TECHNOLOGY & THERAPEUTICS*. 2022; 12:920-24. DOI: 10.1089/dia.2022.0248

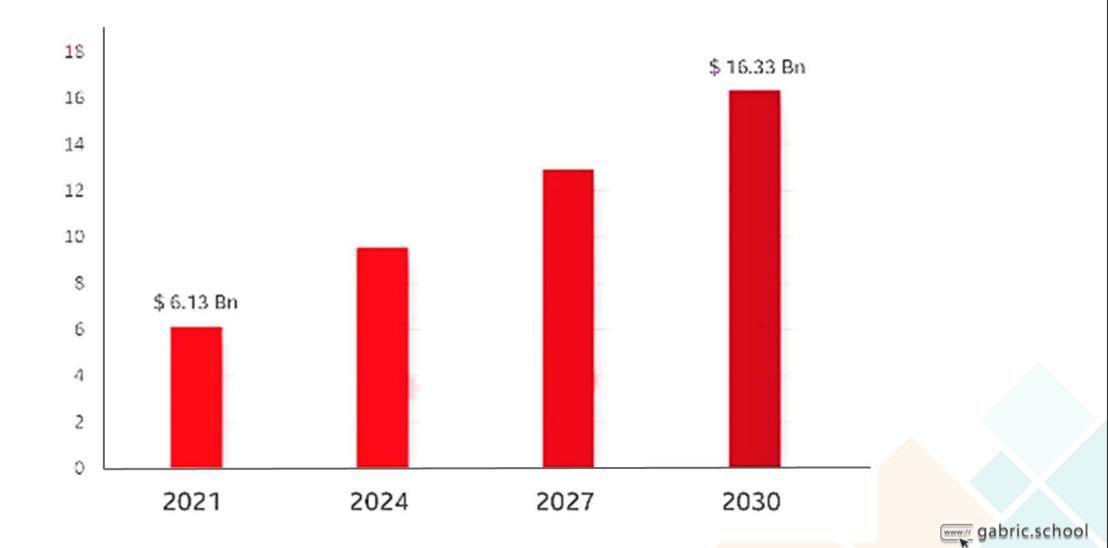
Diabetes. 2022;71(Supplement_1). doi:10.2337/db22-911-P

Insulin & Non-Insulin Hypoglycemia Population

*Dexcom market research and Wall Street research. Estimated Reimbursed Population based on Dexcom market research

Core US Market 🖨

Momentum and opportunity remain significant

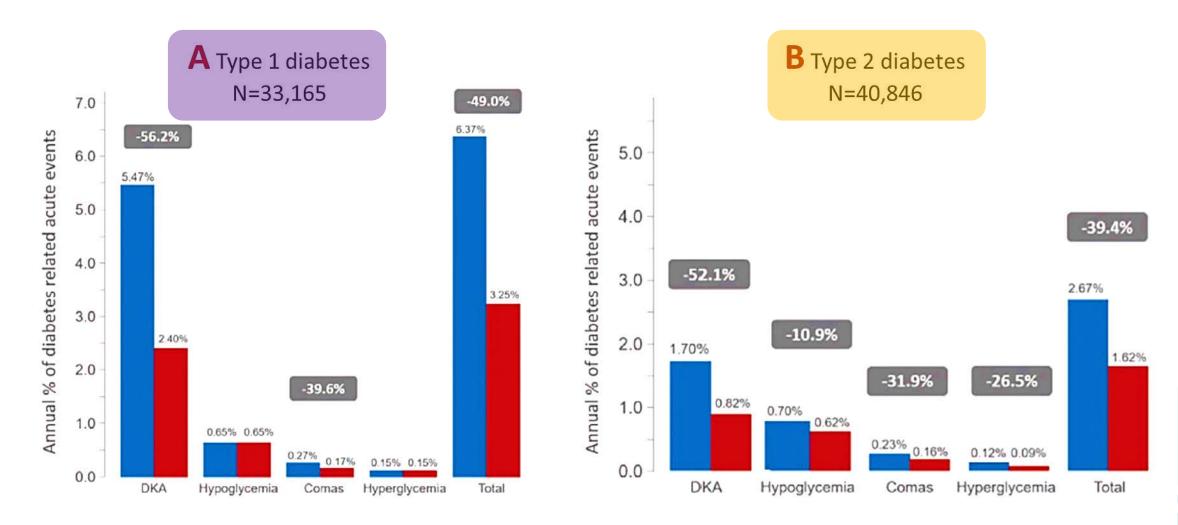

With coverage for basal insulin users and problematic hypoglycemia there is more people with access to CGM than ever before

Dexcom

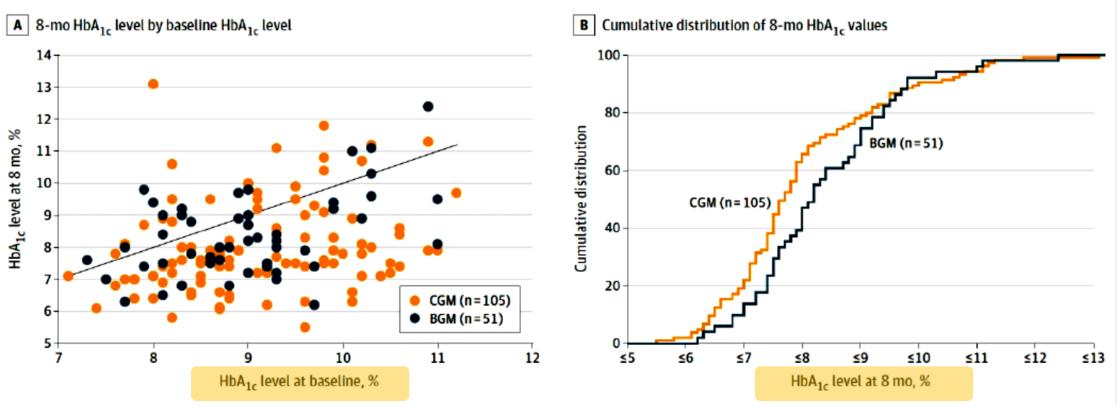
Global CGM devices market research (2021-2030)

Most aggressive growth forecast of 11.5% (USD Billion)

Is Donald Trump still the hot topic?



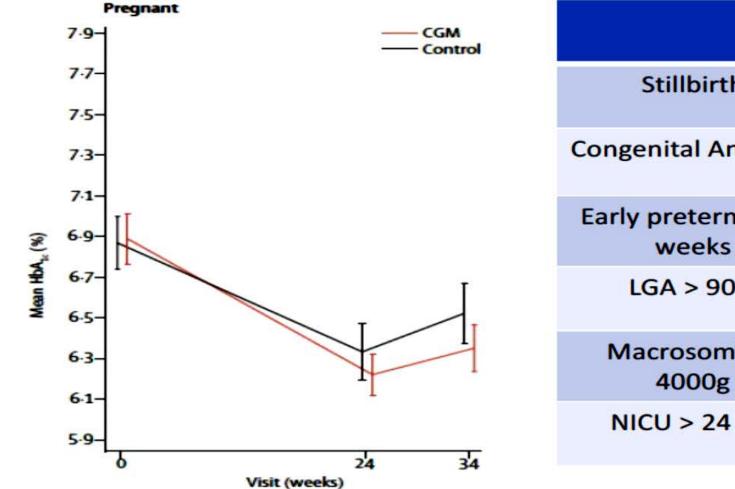
CGMS Outcomes/efficacy Recommendations


RELIEF study, **MDI**, **France**

Roussel et al. Diabetes Care 2021;44:1-9

JAMA | Original Investigation

Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin A Randomized Clinical Trial



Mean difference was -0.4% HbA1c

Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial

	CGM	Control
Stillbirth	0	1
Congenital Anomaly	2	3
Early preterm < 34 weeks	5%	7%
LGA > 90%	53%*	69%
Macrosomia > 4000g	23%*	27%
NICU > 24 hrs	27%*	43%

Feig et al. *Lancet* sept 2017

CGM Devices

7.11 rtCGM A or isCGM B should be offered for diabetes management in adults with diabetes on MDI or CSII who are capable of using the devices safely (either by themselves or with a caregiver).

7.12 rtCGM A or isCGM C should be offered for diabetes management in adults with diabetes on basal insulin who are capable of using the devices safely (either by themselves or with a caregiver).

7.13 rtCGM B or isCGM E should be offered for diabetes management in youth with T_1D on MDI or CSII who are capable of using the devices safely (either by themselves or with a caregiver).

Diabetes Technology: *Standards of Care in Diabetes - 2023. Diabetes Care* 2023;46(Suppl. 1):S111-S127

Comparison the families: Libre vs. Dexcom

Manufacturer	Abbott			Dexcom	
Model	FreeStyle Libre 1	FreeStyle Libre 2	FreeStyle Libre 3	G6	G7
User age	≥4 years old	≥4 years old	≥4 years old	≥2 years old	≥2 years old
Monitoring Time	14 days	14 days	14 days	10 days	10 days
Monitoring Site	back of upper arm	back of upper arm	back of upper arm	abdomen /back of upper arm	abdomen /back of upper arm
MARD Value	11.4%	9.3%	7.9%	9%	8.2%
Test Range	2.2-27.8 mmol/L	2.2-27.8 mmol/L	2.2-27.8 mmol/L	2.2-22.2 mmol/L	2.2-22.2 mmol/L
Output Frequency	15 minutes	1 minutes	1 minutes	5 minutes	5 minutes
Transfer Method	NFC scanning	NFC scanning	real-time Bluetooth	real-time Bluetooth	real-time Bluetooth
Service Life of launcher	one use cycle	one use cycle	one use cycle	Reuse for 3 months	one use cycle
Fingertip Blood Calibration	no calibration	no calibration	no calibration	no calibration	no calibration
Warm-up Time	60 minutes	60 minutes	60 minutes	120 minutes	30 minutes
Data Receiving Device	phone APP/scanner	phone APP/scanner	phone APP	phone APP	phone APP
Interferences	Vitamin C(> 500 mg/day)	Vitamin C(> 500 mg/day)	Vitamin C(> 500 mg/day)	Hydroxyurea, Hydroxycarbamide, Acetaminophen (>1g/6 hours)	Hydroxyurea, Hydroxycarbamide, Acetaminophen (>1g/6 hours)

Sensor Technology Classification of CGM

Gluconolactone

Gluconolactone

Gluconolactone

gabric.school

GC

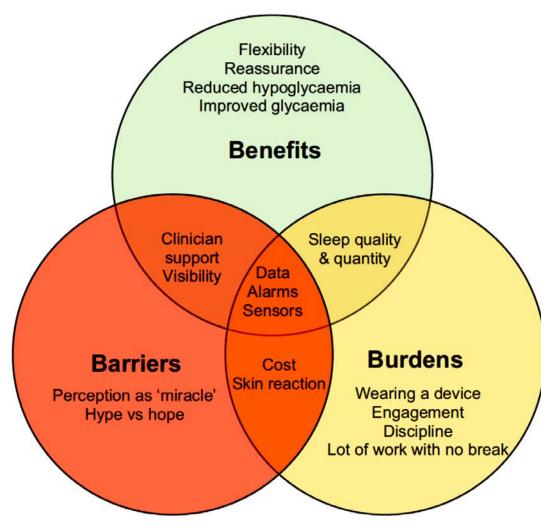
	1 st Generation	2 nd Generation	3 rd Generation	
Reaction	O ₂ / H ₂ O ₂ oxidoreduction	Mediated oxidoreduction	Direct electron transfer	
Substrate	O ₂	Oxidized mediators	No	
Product	H_2O_2	Reduced mediators	No	Glucose
Redox potential	500 to 700 mV	50mV	-50mV to 100mV	1 st generation
Enzyme	GOx	GOx	GDH	02
Interferant	Acetaminophen, O ₂	Ascorbic Acid, O ₂	No	e
Electrode	Au, Pt or other precious metals	Carbon	Carbon	Glucose
Advantages	1. mainstream technology 2. mature development 3. easy engineering	 solve the lack of oxygen in the interstitial liquid reduce the cost of sensor 	 solve the problem of oxygen deficiency in the 1st generation of sensors higher selectivity improved anti- interference ability lower cost 	2 nd generation
Limitations	1.oxygen deficiency and strong oxidation of hydrogen peroxide 2. sensitivity and accuracy are limited to a certain extent	 artificial electron acceptors are mostly water-soluble and easy to lose the degree of engineering is difficult 	the spatial structure and activity of the enzyme may be affected	3 rd generation
CGM manufacturer	Dexcom, Medtronic	Abbott	Sinocare	l.

Barriers in using Technology in T₁DM

Barriers

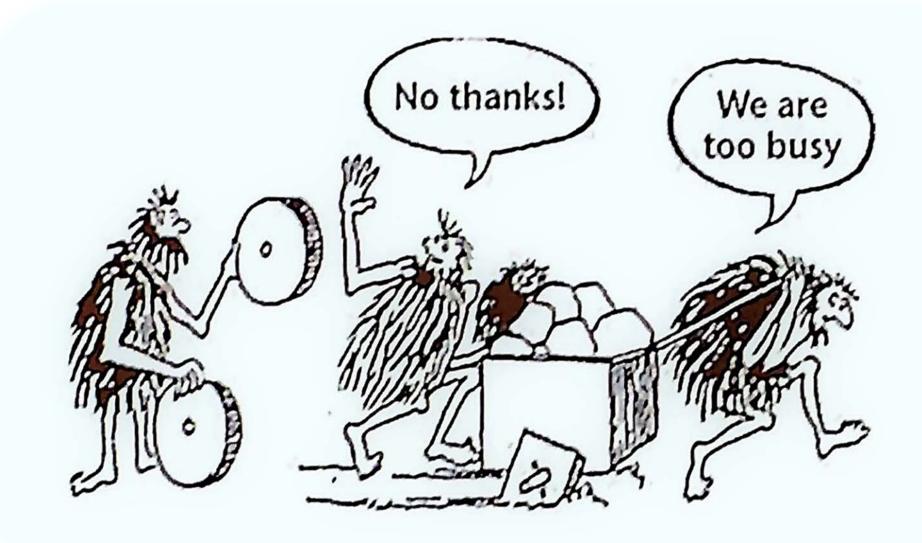
• Cost

• Availability


- \odot Sanction
- Lack of knowledge
 - \circ Public
 - $\circ \text{ HCPs}$
- Sophisticated regulations
- Cybersecurity
- Too many alarms
- Concerns about accuracy
- Interference with sports/activities

The 3Bs associated with using diabetes

technologies from the perspective of the PWD-T₁



Speight J, et al. Diabet Med. 2023;40:e14944. doi: 10.1111/dme.14944

Any innovation has its' pace of acceptance!

Empowering people to take control of health

Where We Are

- Type 1
- Type 2 IIT
- Type 2 Basal-Only
- Type 2 Problematic Hypo (Non-Insulin)

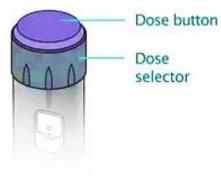
Where We Are Going

- Type 2 Non-Insulin
- Pre-Diabetes
- Gestational Diabetes
- Patient Monitoring
- Health & Wellness

"Periodically, a new idea, method, or tool leads to a turning point in the management of diabetes. We believe such a moment is now upon us, brought by development of reliable devices for continuous glucose monitoring."

gabric.school

Connectivity in diabetes


You will not forget

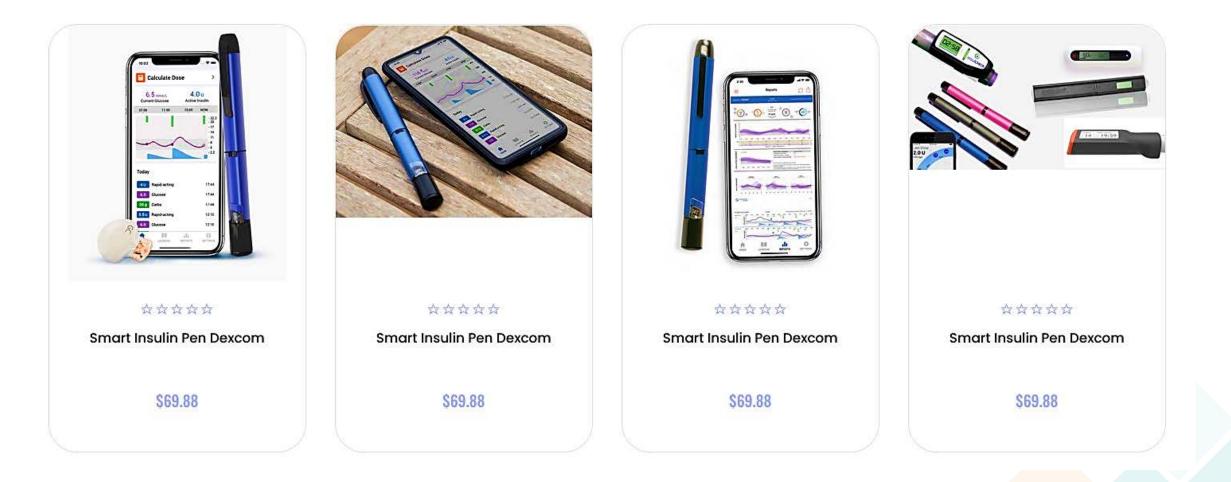
Conhecendo o SoloSmart e a caneta

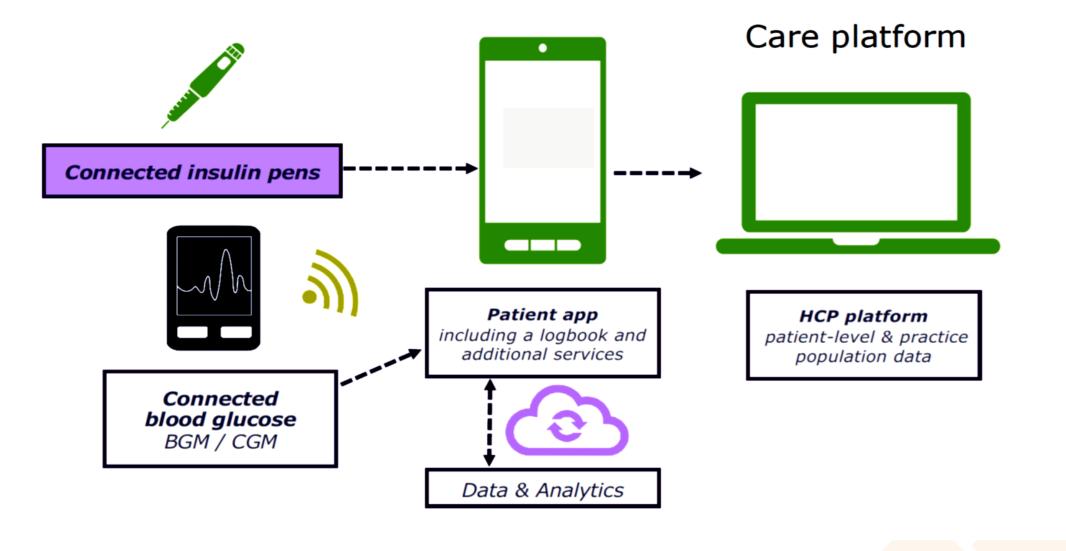
Sanofi SoloStar® insulin pen

gabric.school

Connectivity Solutions

Smart insulin caps	SoloSmart Button	Tempo Smart Button	Dialoq
Picture		tempo	
Firm	Sanofi	Lilly	Novo Nordisk
Fits on	Solostar	Tempopen	FlexTouch
Approval	CE-label	CE- an FDA-label verwacht	?
		eind 2022	
Dedicated app	yes: Mallya app	yes	no
Sends data to	Gluci-Check & RDCP,	MySugr, RDCP, Glooko,	MySugr, Glooko, Libreview
	YourLoops?	MyDiabby, Welldoc,	from summer 2022?
		Dexcom	
Battery	Rechargeable via USB	1 year warranty	?





Dexcom Smart Insulin Pens

Connected Pens and meters are enablers for data driven consultations \rightarrow and possibly decision support systems

gabric.school

It becomes the user's choice

• To drive themselves, or to be driven

What about Iranian efforts?

Insightfully Scanned Glucose Monitoring (iSGM) Novel Modality in Diabetes Monitoring

SMART View

FREE SENS

Insights beyond the numerical glucose results

SMBG Data Quality Provides insights on SMBG Adherence

Point in Range Provides insights on glycemic variability

Modal View Provides insights intra-day variability

Hypo Risk Analysis Provides insights on hypoglycemic events

Abstract Number: 995

Abstract Title: Insightfully Scanned Glucose Monitoring (iSGM) In Clinical Decision Making And Patient-physician Communication: A Novel Modality For Resource-limited Settings

BG

Background and Aims

CGM is becoming standard of care in diabetes, however not easily accessible in low- and middle-income countries (LMICs). Capillary blood glucose monitoring is the most accessible tool. Patient-reported Blood Glucose (BG) data are known to be inaccurate. Physician's access to aggregated BG data is limited with complexity of Bluetooth and cable-connected devices. Insightfully scanned glucose monitoring (iSGM), a novel integration of NFC enabled glucose meter with a mobile application can provide physicians with glucose analysis including point (PIR), modal view and hypoglycemia report. This study evaluates the benefits of iSGM in therapeutie cision making and patient-physician communication.

Methods

Individuals with T1DM and T2DM were consecutively recruited from seventeen practices. Patient-report were compared to iSGM reports. Physician's perspective was evaluated using a questionnaire.

Results

161 Individuals, 53% female, 52% T2DM, median age 38 years (IQR 15-59), median diabetes duration 8 jack 4-15) and median HbA1c 8% (IQR 7.05-9.50) completed the study. 9282 glucose values were downloaded 31.7% were missing in patient-reported data. 29.6% of patient-reported values were fabricated. 39% of hypoglycemia events were missing. 55.4% of patient-reported data was clinically reliable. 100% of physicians agreed iSGM provides a comprehensive analysis on glycemic control, while only 17% agreed BG logging was helpful for therapeutic adjustments. 94% of physicians agreed iSGM is an effective tool for hypoglycemia identification, facilitates patient-physician communication and patient-centered diabetes care.

Conclusions

iSGM compared to BG logging is an effective modality for insightful and accurate therapeutic adjustments and may facilitates diabetes care especially in LMICs.

ments for Diabet