

In The Name of GOD

Association between new indices and the carotid intima-media thickness in type 2 diabetes mellitus

Laily Najafi, MD, PhD¹, Atefeh Amouzegar MD^{2,3}, Zahra Mirzaasgari MD^{3,4}, Fariba Alaei-Shahmiri, MD, PhD^{1*}

type 2 diabetes mellitus (T2DM).

This study aimed to investigate the relationship between triglyceride glucose (TyG) index and monocyte/high-density lipoprotein cholesterol ratio (MHR) and carotid intima-media thickness (CIMT) in

- Plaque rupture

INTRODUCTION THE 14th INTERNATIONAL CONGRESS OF **ENDOCRINE DISORDERS** 22"d - 24th November 2023

 Atherosclerosis is a picture of CVD Progression into plaque formation (atheroma)

• Eventually thrombotic occlusion of the vessels

Characterized by the accumulation of fatty streaks in arterial walls and as well as a chronic inflammatory state

- IHD, stroke, and PAD.
- of AS at different levels.

• It is crucial for the early identification of high-risk people and the timely control of AS progression.

• Risk factors: HTN and DM, can accelerate the progression

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24th November 2023

• This process may cause mortality and morbidity, such as

inflamed tissue.

During systemic inflammation and atherogenesis, macrophages and monocytes are the most prominent sources of proinflammatory and pro-oxidant cytokines. In AS, macrophages and monocytes remove modified and oxidized LDLs, which are then attracted into the artery wall, causing the release of inflammatory cytokines in

• As a result, monocyte accumulation and HDL-C decrease may play a role in AS and CVD. Monocyte/HDL-C ratio (MHR) could be a useful marker for predicting the development and progression of inflammatory processes such as AS.

In this context, it was also demonstrated that insulin resistance (IR) plays an essential role in the development of DM, HTN, and AS and it is a well-known predictor of a wide range of CVDs.

• The triglyceride glucose (TyG) index, has been introduced as a reliable and affordable marker for IR prediction, more accurately than HOMA-IR. Given that both hypertriglyceridemia and impaired glucose metabolism are commonly related to IR and AS.

Growing attention is now attracted to assessing the association of the TyG index and MHR with AS.

ENDOCRINE DISORDERS 22"d - 24th November 2023

cardio/cerebrovascular events.

imaging marker for the diagnosis of preclinical carotid AS, which was shown to have predictive value for future

Carotid intima-media thickness (CIMT) is a widely used

Cross-sectional study • Between 2019 to 2021 • A total of 244 participants. Endocrine Research Center and Firoozgar teaching tertiary hospital in Tehran, Iran T2DM, age range of 30-60Y/O, DM duration > 5 Yrs.

- Smoking and drug abuse
- Pregnancy
- Renal transplantation
- malignancy, thrombocytopenia)
 - and BMI \geq 35.

EXCLUSION CRITERIA

Using medications (the corticosteroid, immunosuppressants, ...)

hyperplasia, chronic lung or renal disease, chronic or acute infection,

• Albuminuria, HbA1C \ge 9, LDL-C \ge 100, TG \ge 250, BP \ge 160/100, e-GFR <30

Systemic diseases (CVD, autoimmune disease, Cushing, adrenal

• The research protocol (IR.IUMS.REC.1397.1118) was approved by the ethics committee of the Iran University of Medical Sciences, and all participants signed and gave written informed permission.

• Duplex ultrasonography parameters and demographic, physical, and paraclinical assessments were recorded.

The monocyte count was evaluated by applying data provided by the CBC differential analysis. • The MHR was computed for both groups by monocyte counts $(x10^{6}/L)/HDL-C (mg/dL)^{\mathbb{B}}$.

• The TyG index was calculated as Ln [TG (mg/dl) × fasting glucose (mg/dl)/2][®].

The CIMT was evaluated by a single professional and experienced neurologist (neurosonologist and blinded).

A duplex ultrasound system (B-Mode) with an 8-Hz linear probe (Sonosite M Turbo, Fuji Film, Japan).

- of CCA.
- No atherosclerotic plaques were present.

Association[®].

• The average of the RT and LT CIMT was employed. • Mean CIMT> 75th percentile for age, race, and gender was recognized as a risk factor for CV events by the American Echocardiographic

• The mean CIMT was calculated by estimating the thickness of the innermost two layers of intima-media in 10 mm before the bifurcation

118 DM and 126 non-DM • Sex ratio F/M = 1.16 Median age of 47 Yrs. • Diabetes duration is 7 (5-10) yrs.

Individuals with T2DM were older and had significantly higher BP, and FBG, and lower e-GFR, total cholesterol, and LDL-C than non-DM (P values < 0.05).

Characteristics of the study participants by diabetes status.

Age (year) Gender (Female, n (%)) BMI (kg/m^2) SBP (mmHg) DBP (mmHg) FBG (mmol/l TG (mmol/l) Total cholesterol (mmol/l) LDL-C (mmol/l) HDL-C (mmol/l) e-GFR (mL/min/1.73m²) **Diabetes duration (year)** Medical history Hypertension Dyslipidemia TyG CIMT (mm) MHR

Non-diabetic group (n = 126)42.71±9.82 69 (54.8%) 26.32 (23.39-28.48) 120.0 (110.0-120.0) 76.86±7.69 5.33 (5.11-5.72) 1.07 (0.85-1.67) 3.85 (3.18-4.70) 2.46 (2.07-3.05) 1.11 (1.06-1.24) 84.3 (69.0-98.4)

28 (22.2%) 18 (14.3%) 8.44 (8.21-8.93) 0.42±0.10 2.65(1.87-4.37)

P-valu
< 0.002
0.73
0.68
< 0.002
0.003
< 0.002
0.40
0.001
< 0.002
0.57
0.006
_
0.30
0.51
< 0.002
0.29
0.13

le			
1			
1			
1			
1			
1			

There was no significant difference between CIMT and MHR evaluated in the two groups. However, individuals with T2DM had significantly higher TyG index.

MHR (rs= 0.32, P=0.001).

 In correlation analyses, CIMT was directly related to age (r_s=0.288, P<0.001), BMI (rs=0.203, P=0.001), TG (rs=0.153, P=0.016), cholesterol (rs=0.174, P=0.007), LDL-C (rs=0.313, P<0.001) ,TyG index (rs=0.190, P=0.003), and

Association of the CIMT and the MHR.

Association of the CIMT and the TyG index

TyG

Non diabetic Diabetic

10.5

• Stratified by sex, the median (IQR) of MHR values in DM and non-DM male groups were 2.42 (1.75-4.11) and 3.39 (2.36-5.09), respectively (P=0.035). However, there was no difference between the DM and non-DM female groups, with (P=0.962).

• Finally, the regression models were built to quantify the influence of MHR on CIMT (corrected for any of the covariates' BMI as a clinical factor[®], age, LDL, and e-GFR, and completely adjusted, stratified by diabetes and sex status).

Univariate and multivariate regression analysis were performed on CIMT.

Variable	DM ⁺ -Female		Non-D	M-Female
	Beta	P-value	Beta	P-value
Crude	0.127	0.32	-0.065	0.59
Age-adjusted	0.128	0.32	-0.032	0.76
BMI ^α -adjusted	0.097	0.44	-0.046	0.70
LDL- C ^β -adjusted	0.033	0.76	-0.081	0.49
e-GFR [¥] -adjusted	0.106	0.40	-0.061	0.61
Fully-adjusted**	0.028	0.80	-0.024	0.80

		DM-Male	Non	-DM
	Beta	P-value	Beta	Ρ
	0.294	0.02*	-0.097	
	0.248	0.04*	-0.093	
	0.290	0.03*	-0.082	
	0.282	0.03*	-0.060	
	0.248	0.05*	-0.081	
	0.220	0.07	-0.042	

MHR was shown to be a significant predictor of CIMT in only <u>male</u> DM participants when crudely and adjusted for confounders.

Additionally, the univariate linear regression analyses performed on the whole data and two study groups separately. A significant association was revealed between CIMT and TyG index (on the whole data ($\beta = 0.197$, P=0.002) and two study groups (DM: $\beta = 0.192$, P=0.037 & non-DM: $\beta = 0.256$, P=0.004) respectively).

THE 14th INTERNATIONAL CONGRESS OF ENDOCRINE DISORDERS 22"d - 24th November 2023

Univariate and multivariate regression analyses of CIMT by diabetes status

Variable	Unstandardized Coefficients	Standardized Coefficients	D melme	95.0% Confide	
	B	Beta	r-value	Lower Bound	Upper Bound
TyG	0.050	0.197	0.002	0.019	0.082
Age	0.003	0.264	0.000	0.002	0.004
Gender	0.036	0.154	0.010	0.008	0.063
BMI	0.003	0.118	0.041	0.000	0.007
LDL-C	0.054	0.362	<0.001	0.037	0.072
e-GFR	-0.001	-0.134	0.039	-0.001	0.000
TyG	0.057	0.192	0.037	0.003	0.110
Age	0.003	0.224	0.008	0.001	0.005
LDL-C	0.080	0.395	< 0.001	0.047	0.114
TyG	0.058	0.256	0.004	0.019	0.096
Age	0.003	0.322	< 0.001	0.002	0.005
Gender	0.040	0.199	0.010	0.010	0.071
BMI	0.003	0.128	0.081	0.000	0.006
SBP	0.002	0.188	0.015	0.000	0.003
Chol	0.030	0.301	<0.001	0.016	0.045
e-GFR	-0.001	-0.210	0.010	-0.002	0.000

linear Multivariate analyses regression performed; (age, gender, BMI, LDL-C, and e-GFR were the main determinants of CIMT in the best-fit model (R²: 0.242)). Accordingly; LDL-C and age having the most influence in whole data (LDL-C; $\beta = 0.362$, P<0.001 and age; $\beta = 0.26$, P = 0.000).

• A subsequent separate analysis for both groups revealed that age and LDL-C were significant predictors of CIMT in individuals with DM (R²: 0.192).

Age, gender, SBP, total cholesterol, and e-GFR levels in non-DM (R²: 0.400).

MITATIONS

COVID 19 PANDEMIC

THE 14th INTERNATIONAL CONGRESS OF **ENDOCRINE DISORDERS** 22"d - 24" November 2023

CONCLUSIONS

DM II patients in clinical settings. sample size is required to confirm these results.

• Using the MHR and TyG index may improve the prediction of subclinical carotid atherosclerosis of More comprehensive research with a larger

Thanks for Your Attention

